One small step for a man
One Giant leap for the mankind

There is no wealth like Knowledge
                            No Poverty like Ignorance
Journal of Emerging Trends in Computing and Information Sciences Logo

Journal of Emerging Trends in Computing and Information Sciences >> Call for Papers Vol. 8 No. 3, March 2017

Journal of Emerging Trends in Computing and Information Sciences

Efficient Method for Multiple-Level Association Rules in Large Databases

Full Text Pdf Pdf
Author Pratima Gautam, K. R. Pardasani
ISSN 2079-8407
On Pages 722-732
Volume No. 2
Issue No. 12
Issue Date December 01, 2011
Publishing Date December 01, 2011
Keywords association rules, data mining, partition method, multilevel rules


Abstract

The problems of developing models and algorithms for multilevel association mining pose for new challenges for mathematics and computer science. These problems become more challenging when some form of uncertainty in data or relationships in data exists. In this paper, we present a partition technique for the multilevel association rule mining problem. Taking out association rules at multiple levels helps in discovering more specific and applicable knowledge. Even in computing, for the number of occurrence of an item, we require to scan the given database a lot of times. Thus we used partition method and boolean methods for finding frequent itemsets at each concept levels which reduce the number of scans, I/O cost and also reduce CPU overhead. In this paper, a new approach is introduced for solving the abovementioned issues. Therefore, this algorithm above all fit for very large size databases. We also use a top-down progressive deepening method, developed for efficient mining of multiple-level association rules from large transaction databases based on the Apriori principle .  

Back

Seperator
    Journal of Computing | Call for Papers (CFP) | Journal Blog | Journal of Systems and Software | ARPN Journal of Science and Technology | International Journal of Health and Medical Sciences | International Journal of Economics, Finance and Management     
Copyrights
© 2015 Journal of Computing