
Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

38

Android and Real-Time Applications: Take Care!
1Luc Perneel, 2Hasan Fayyad-Kazan, 3Martin Timmerman

1PhD Candidate, Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2- 1050 Brussel, Belgium
2PhD Candidate, Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2- 1050 Brussel, Belgium

3Professor, Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2- 1050 Brussel, Belgium
3Professor, Department of Mathematics, Royal Military Academy Brussels, Hobbemastraat 8-1000 Brussels, Belgium

E-mail: 1luc.perneel@vub.ac.be, 2hafayyad@vub.ac.be, 3martin.timmerman@vub.ac.be

ABSTRACT
Android is thought as being yet another operating system! In reality, it is a software platform rather than just an OS; in practical
terms, it is an application framework on top of Linux, which facilitates its rapid deployment in many domains. Android was
originally designed to be used in mobile computing applications, from handsets to tablets to e-books. But developers are also
looking to employ Android in a variety of other embedded systems that have traditionally relied on the benefits of true real-time
operating systems performance, boot-up time, real-time response, reliability, and no hidden maintenance costs.
In this paper, we present a preliminary conclusion about Android’s real-time behavior and performance based on experimental
measurements such as thread switch latency, interrupt latency, sustained interrupt frequency, and finally the behavior of mutex
and semaphore. All these measurements were done on the same ARM platform (Beagleboard-XM). Our testing results showed
that Android in its current state cannot be qualified to be used in real-time environments. Finally we provide some potential
solutions for using Android in such environments.

Keywords: Real-time, Android

1. INTRODUCTION
Android [1] is considered today as one of the leading

platforms for mobile devices. Being as an open source
platform distinguishes it from most other mobile platforms
such iOS, Blackberry and Windows Phone.
As Dan Morrill memorably explained in “On Android
Compatibility”, “Android is not a specification or a
distribution in the traditional Linux sense. It’s not a collection
of replaceable components. It is a chunk of software that you
port to a device.”[2]. Android is an open source platform built
by Google that includes an operating system, middleware, and
applications for mobile platforms. It is based on Linux kernel
that enables developers to write applications primarily in Java
with support for C/C++ as well.

A key to its likely success is licensing. It is open
source and a majority of the source is licensed under Apache2,
allowing third party adopters to do interesting developments
and useful modifications of the platform.

Since its official release, this software platform has
been constantly improved either in terms of features or
supported hardware, and at the same time, extended to new
types of devices different from the originally intended mobile
ones [3].

Recently, efforts were undertaken by researchers to enhance
the real-time capabilities of the Android platform [3] [16] [18]

in order to be employed in a variety of other embedded
systems.
In different embedded software systems (as in automotive or
robotic applications), the ability to meet deadlines and time
constraints is a critical part of the design specifications. These
systems require response to stimuli within pre-specified real-
time constraints. As such, the reliability of software has not to
focus only on the functional failures but require as well a
detailed evaluation of the ability of the system to meet these
timing specifications [4].

The aim of our research is to test the real time
behavior and performance of Android, in order to make it
clear whether Android can be advised to be used in open real-
time environments. For this evaluation, a testing suite of four
performance tests and one behavior test are used. The
performance tests are: thread switch latency, interrupt latency,
sustained interrupt frequency, and semaphore acquire-release
timing in contention case, while the behavior test checks the
mutex locking behavior.

2. ANDROID ARCHITECTURE
An Android system (Figure 1 [5]) is an eco-system

made up of a stack of software components. At the bottom of
the stack, there is the Linux OS which provides basic system
functionality such as process and memory management,
security, and networking. It supports also a vast amount of

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

39

device drivers which are there for handling network
interfaces, file systems, human machine interfaces and more.

The Linux kernel used for supporting the Android system has
been significantly modified by Google. For instance, a
specific inter-process communication system (IPC), a kernel
logging facilities, a low memory killer, a shared memory
system and many other changes were developed. Therefore,
running Android on top of the standard Vanilla Linux is not
possible without merging these Android specific changes into
the mainline kernel, which can only be done from Linux
version 3.3. Before that, it was not easy to build a real-time
Linux kernel for Android. Remark that until the moment of
writing this paper, the latest official Android Linux version as
released by Texas Instruments targeting the Beagle platform
is still based on the Linux kernel v3.2 and Android v4.0.3 (Ice
Cream Sandwich).

On top of the Linux OS, there is a set of libraries including
Google’s version of libc called Bionic, along with media and
graphics (OpenGL ES) libraries, browsers (Webkit) support,
and a lightweight database, SQLite. [5]

Alongside the libraries, on top of the OS, is the Android
runtime “Dalvik Virtual Machine” (DVM) which is a key
component of an Android system. It was designed specifically
for Android and it is completely different compared to the
original (Sun) Java Virtual Machine (JVM). Dalvik uses
register based byte code instead of the stack based JVM as
originally implemented by Sun and this to conserve memory
and maximize performance. It is designed to be instantiated
multiple times, where each application has its own private
copy running in a Linux process. DVM makes full use of
Linux for memory management and multi-threading, which is
needed to support the Java language.

Above the libraries and Android-runtime layer, is the
Application Framework layer which provides many higher-
level services to applications in the form of Java classes. The
use of it will vary from one implementation to another. [5]

The top layer is the application layer which contains a number
of applications that are routinely distributed with Android,
which may include email, SMS, calendar, contacts, and Web
browser.

One of the reasons that pushed Google to develop a
completely new JVM is to be totally independent from the
original JVM developed by Sun. They started the Dalvik
development from scratch. This “clean room” approach
created a totally different Java VM implementation using a
register based byte code instead of the original stack based
one. Although a clean room approach doesn't protect against
patent infringement, it reduces the risk significantly.
The Java language itself is not protected by patents, however
the Sun JVM implementation is. Consequently, all existing
real-time enhancements developed for the original JVM cannot
be applied nor ported easily to Dalvik.
The Dalvik VM uses bionic libc instead of standard Linux
libc used by Sun embedded JVM. Bionic libc is not
compatible with glibc. All native libraries must be compiled
against bionic libc. It has a very fast and small custom
pthread implementation compared to glibc. [6].

Bionic has built-in support for Android specific services like
system properties and logging capabilities. Writable data
segments will be loaded in each process. Doing so, they made
the size of these segments as small as possible. Also the code
size is kept small. Linux will load the read-only pages only
once in memory for each process using it. This approach is
adapted to small footprint devices.

As a synthesis: the reasons to develop Bionic instead
of using the glibc library are: a small memory footprint, high
speed on CPUs at relatively low frequencies, and last but not
least to avoid the inclusion of GPL code at user space level in
its platform, where BSD is used instead.

What is now the impact of using Bionic libc if it
comes to real-time applications?
Bionic libc does not handle C++ exceptions. Omitting lower
level exceptions does not cause any problems to Android
because its primary language is JAVA which handles
exceptions in its internal runtime package [6] but this is not
useful in a real-time-context.
We also observe that Bionic is missing a very essential object
one can find in the traditional glibc implementation: priority
inheritance mutexes. Although they are available in the
kernel, one can access them only by building own library
above the Linux system calls. The lack of some priority
inversion avoidance mechanism is already enough to
disqualify the system as real-time capable.

Remark that there are some alternative library providers
showing up like CrystaX [7]; it uses the newlib variant, which

Figure 1: Android Architecture [5]

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

40

also does not support priority inheritance for mutexes yet. As a
consequence, this is not a solution either.

3. EXPERIMENTAL SETUP
Linaro [8] Android Beagle release 11.09 is tested

here. This image release uses Android version 2.3.5 and is
based on Linux 3.0.4. At the time of the evaluation tests, this
image was the only available to run on the chosen ARM
platform (BeagleBoard-XM).
It is already known that Android has gone through radical
changes and had much more recent releases (currently
versions 4.x). However, our test results remain valid on these
recent releases because the important parts that are
influencing the real-time behavior of Android have not been
modified. We go in more detail of the justification later on.
The used source code for Android including its kernel is
obtained from a repository available at [9] and [10]. Our test
policy is to use the kernel configuration as delivered and no
adaptation is done.

The main hardware platform for Android is the ARM
architecture. There is support for x86 from the Android x86
project [11] and Google TV uses a special x86 version of
Android.
BeagleBoard-XM Rev C hardware [12] is used as our
experimental platform. Its characteristics are: based on the
Texas Instruments DM3730 Digital Media Processor, ARM
Cortex A8 processor running at 1GHz, L1 instruction and data
caches are 32KB each, L2 cache is 64KB, and 512MB RAM
at 166MHz.

4. TESTING PROCEDURES AND RESULTS

A. Measuring Process

For tracing and measuring the performance results on
the chosen hardware, an internal General Purpose timer (GPT)
running at 13MHz is used. Reading out the values of this timer
takes some overhead; however, there isn’t any jitter at all in
the overhead and therefore generates a constant bias which can
be corrected. Although it is possible to let the GP timer run at a
higher frequency, the clock attached to this GP timer is also
distributed to other components on the chip. Therefore, we
stick with the configuration that is used by the OS on this
board and we don’t need the extra resolution in our context.

In order to directly access the GP Timer from our test
software, it is mapped into user space. Further, the
measurements’ samples are stored in RAM and are written on
non-volatile storage after the completion of the test which is
then transferred to a data analyzing software. We use the
mlockall() call to prevent copy-on-writes upon first write in a
virtual page. Also, the real-time run-away protection is
disabled by setting the kernel configuration parameter
(/proc/sys/kernel/sched_rt_runtime_us) to (-1).

The application and libraries are stored on RAM disk to avoid
swapping out any read-only section. Finally, all tests are done
using threads in the real-time scheduling classes.

B. Performance metrics

A quick online survey of RTOS metrics maintained
by third party consultants, students, researchers, and official
records (of distributor companies) reveals that the following
three categories are used to evaluate an RTOS solution [13]:

 Memory footprint
 Latency
 Services performance

Among these measurements, footprint provides an estimated
usage of memory by a RTOS on an embedded platform. The
other two categories measure various types of RTOS
overhead or runtime performance. Latency is reported in two
different ways: interrupt and scheduling, and services
performance is the minimum time taken by the RTOS
interface to complete a system call [13].
In this paper, we test latency and services performance
metrics. Before presenting the evaluation tests and the
obtained results, we always perform two preliminary tests (the
first 2 tests below) to assure the accuracy and precision of the
tests.

1) Tracing overhead

This test calibrates the tracing system overhead
which is essentially hardware related. The results presented in
this paper are corrected from this constant bias.
Tracing precision depends on the GPT (13MHz), as this is the
minimum time frame that can be detected. As a consequence,
the results in this paper are correct to +/- 0.1 µseconds and are
therefore rounded to 0.1 µseconds. The Y-Axis’s in the charts
are all in µseconds.

2) Clock tick processing duration

This test examines the clock tick processing duration
in the kernel. The results are extremely important as the clock
interrupt - being on a high level interrupt on the used hardware
platform - will disturb all other performed measurements.
Using a tickless kernel will not prevent this from happening as
it will only lower the number of occurrences. The tested OS
kernel is not using the tickless timer option.
The way we get the clock tick duration in this test is simple:
we create a real-time thread with the highest priority. This
thread does a finite loop of the following tasks: get time, start a
busy loop that does some calculations, get time again. Having
the time before and after the busy loop provides the time
needed to finish the job. This busy loop will only be delayed
by interrupt handlers. As we remove all other interrupt
sources, only the clock tick timer interrupt can delay the busy

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

41

loop. When the busy loop is interrupted, its execution time
increases.

Figure 2a shows the results over time of the “clock
tick duration test”. The X-axis indicates the time when a
measurement sample is taken with reference to the start of the
test. The Y-axis indicates the duration of the measured event;
in this case the total duration of the busy loop. This description
applies to all the figures below.
The bottom line of figure 2a represents the normal busy loop
duration if no clock interrupt occurs during the busy loop. Due
to the high values that we have in this figure, the busy loop
duration is not that clear because of scaling reasons. Figure 2b
is a zoomed version which can clearly show that the busy loop
time, if no interrupts occurred, is 42µs. The other samples
above the bottom line in figure 2a are measurements when a
clock interrupt occurred during the busy loop. The difference
between these points and the bottom line is in fact the clock
tick processing duration.

A worst clock time duration of about 350 µs is
detected (Figure 2a), which is extremely high. Clearly, each
100ms, the timer causes a major delay. Further, having a
detailed look at the clock ticking (Figure 2b) (skipping the
long 350µs delay), we see that it is split up into three parts.
This seems to be a phenomenon in the kernel when using the
low power 32 KHz OMAP timer to control the operating
systems clock tick. By enabling a higher frequency GP timer
as base for the operating system clock, the traditional clock
tick behavior will be visible again.

We did our tests using the default configuration from
Linaro, which uses the low power 32 KHz OMAP timer as OS
system clock source and sets the operating system tick
frequency of 128Hz. Although our policy is to do black box
testing only, it shows that the tests are very efficient in
uncovering specific behavior which could help system
designers to fine-tune or enhance their system.

Figure 2a: Clock tick duration

Figure 2b: Clock tick duration (zoomed view)

Remark that in the evaluation of the Linux PREEMPT_RT on
the same platform (can be found in [14]) which was
particularly fine-tuned for real-time use, a high frequency
timer is used to control the operating system clock. Android
however is designed for portable devices and is optimized for
low power consumption. This is a bad idea when real-time
performance is needed.

3) Thread switch latency between threads of same priority

Although real-time threads should be on different
priority levels to be capable of applying rate monotonic
scheduling theory [20], this test is executed with threads on the
same priority level in order to easily measure thread switch
latency without interference of something else.
For this test, threads must voluntarily yield the processor for
other threads; so SCHED_FIFO scheduling policy is used. If
we wouldn’t use this policy, a round-robin clock event could
occur between the yield and the trace, so that the thread
activation is not seen in the trace.

Here is a brief explanation of this test: A “creating”
thread starts creating a specific number of threads that have the
same priority level which is higher than its priority. Whenever
a thread is created, it will immediately lower its priority below
the priority level of the creating thread in order for the
“creating” thread to continue creating all the desired threads.
Once all the threads are created, the creating thread lowers its
priority below the priority level of the created threads. The
first thread in the queue will start execution, does its job, and
then yield the processor for the next thread (which does the
same). The job of each created thread is to get the timer
counter value at the beginning of its execution, do some
calculations, and then again get the timer count value at the
end of its execution. The difference between the ending timer
count of the previous thread and the start value of the next
thread is the switch latency.

This test looks for the worst-case behavior, and
therefore it is done with an increasing number of threads,
starting with two (2) and going up to 1000. As we increase the
number of active threads, the caching effect becomes visible
since the thread context will no longer be able to reside fully in
the cache (on this platform the L1 caches are 32KB, both for

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

42

the data as the instruction cache). Further, you will clearly see
the influence of clock interrupts (causing the maximum values
in the figures below).

In the 1000 threads test, you will observe we were
lucky not to catch the 300µs delay during the thread switch
measurement. We publish this sub-test on purpose to show the
random behavior of OS based system. Our tests are repeated
multiple times (or bigger trace buffers are used if possible) in
order to have a high degree of probability that all (bad)
behavior has been caught.

The testing results (in µs) of this test are shown as follows:

Test Avg Max Min

Thread switch
latency between 2
threads

7.9 317 7.6

Thread switch
latency between 10
threads

8.4 321 7.9

Thread switch
latency between 128
threads

13.2 363 9.5

Thread switch
latency between 1000
threads

14.3 62.8 12.8

Figure 3a: Thread switch latency between 2 threads

Figure 3b: Thread switch latency between 10 threads

Figure 3c: Thread switch latency between 128threads

Figure 3d: Thread switch latency between 1000 threads

4) Interrupt latency

This test measures the time required to switch from a
running thread to an interrupt handler. The time is measured
from the moment the running thread stops executing up to the
first instruction in the interrupt handler itself. So it does not
measure the hardware interrupt latency, but only the software
part. This measurement method will not detect how long the
interrupt has been masked. The sustained interrupt test (next
test metric 5) will do.
Note that in this test, another GPT on the board is used for
generating the interrupts.

The clock time is easily detected again.

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

43

The results of this test are shown in Figure 4 and the
following table.

Test Avg Max Min

Interrupt dispatch latency 1.9 µs 30.9

µs

1.8 µs

Figure 4: Latency from the interrupted thread to the interrupt handler

5) Maximum sustained interrupt frequency

This test detects when an interrupt cannot be handled
anymore due to the interrupt overload. In other words, it
shows a system limit depending on, for example, how long
interrupts are masked, how long higher priority interrupts (the
clock tick or other) take, and how well the interrupt handling
is designed.

This test gives a very optimistic worst case value due to the
fact that, because of the high interrupt rate, the amount of
spare CPU cycles between the interrupts is limited or nil.
Also, depending on the length of the interrupt handler, it
might mostly be present in the caches. In a real world
environment, the worst case will be greater.

In this test, 10 million interrupts are generated at specific
interval rates. Our test suite measures whether the system
under test misses any of the generated interrupts. The test is
repeated with smaller and smaller intervals until the system
under test is no longer capable handling the interrupt load.

The table below shows the results:
Interrupt

period
#interrupts
generated

#interrupts
lost

100 µs 10 000 23
120 µs 10 000 17
150 µs 10 000 2
180 µs 10 000 0
310 µs 100 000 3
330 µs 100 000 2

Interrupt
period

#interrupts
generated

#interrupts
lost

350 µs 100 000 0
350 µs 1 000 000 4
370 µs 1 000 000 0
370 µs 10 000 000 6
390 µs 10 000 000 3
410 µs 10 000 000 0

As one can observe in the test results, the clock tick gives us a
serious penalty here. On the long run, you can see that the
guaranteed interrupt latency is around 410µs. This is much
larger than the best case measured with the test metric 4 which
was 1.8µs showing again that metric 4 is really optimistic.

6) Semaphore acquire-release timings in the contention
case

This test checks the time needed to acquire and
release a semaphore, depending on the number of threads
pending on the semaphore. In other words, it measures the
time in the contention case when the acquisition and release
system call causes a rescheduling to occur.

The purpose of this test is to see if the number of pending
threads has an impact on the durations needed to acquire and
release a semaphore. It attempts to answer the question: “How
much time does the OS needs to find out which thread should
be scheduled first?” In real-time systems, this should be a
constant to keep it predictable.
In this test, as each thread has a different priority, the question
is how the OS handles these pending thread priorities on a
semaphore.

Test scenario: we have a “creating” thread which
creates a semaphore with count zero, and then starts to create
90 threads with different priorities. The creating thread has
the lowest priority. When a thread is created, it starts
execution immediately and tries to acquire the semaphore; but
as the semaphore count is zero, the thread blocks and the
kernel switches back to the creating thread. The time from the
acquisition attempt (which fails) to the moment the creating
thread is activated again is called here the “acquisition time”.
This time includes the thread switch time.

After the last thread is created and pending on the
semaphore, the creating thread starts to release the semaphore
repeating this action until there is no more any thread pending
on the semaphore. So this action is repeated 90 times (the
number of pending threads on the semaphore). The moment
the semaphore is released, the “release duration” time is
started. The highest priority thread that is pending on the
semaphore becomes active and it will stop the “release
duration” time for the current pending thread. We can see in
figure 5b that the release duration for the first thread is around
450µs, and this value is decreasing for the following threads.

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

44

The “release duration” also includes the thread switch
duration.

Now, the most important part of this test is to see if
the number of threads pending on a semaphore has an impact
on the release time periods. The answer is yes, which is
clearly visible in figure 5b as the first thread pending on the
semaphore required around 450 µs and the values decrease as
the number of pending threads is decreasing. If only one
thread is pending, the release time takes an acceptable 15μs
which can be seen at the end of the figure. But with 90
pending threads, the release time is 30 times higher (around
450μs).

This means the Bionic library implementation have
an extremely bad behaving semaphore. First, it is not priority
based but FIFO based. Second, its release durations are
extremely depending on the number of pending threads in a
way that the OS has to look for the highest priority thread in
the semaphore queue of pending threads to release it first. It
is strange that a FIFO based implementation can still behave
so badly upon semaphore release and disqualifies the system
as being real-time.

Figure 5a: Semaphore acquisition time-contention case

Figure 5b: Semaphore release time-contention case

An advantage of an open source platform is the possibility to
have a look into the library code itself and try to understand
why this behavior is so bad which deviates us from our black

box testing policy. Checking the code of the sem_post()
operation in bionic reveals the following [15]:

int sem_post(sem_t *sem)
{

…
old = __sem_inc(&sem->count);
if (old < 0) {
/* contention on the semaphore, wake up all waiters */
__futex_wake_ex(&sem->count, shared, INT_MAX);

}
…

}

Thus upon a semaphore post operation, ALL pending threads
are activated at once. In the sem_wait, all threads, except one,
will start wait again:

int sem_wait(sem_t *sem)
{

…
for (;;) {

if (__sem_dec(&sem->count) > 0)
break;

_futex_wait_ex(&sem->count,shared,
shared|SEMCOUNT_MINUS_ONE, NULL);

}
…

}

Conclusion is that the measured behavior matches the code. In
the glibc implementation, only one thread is activated upon a
normal semaphore post operation which is much better.

7) Mutex Locking behavior

This test checks the behavior of the mutex locking
primitive using the pthread_mutex_lock and related
POSIX calls. Although the Linux kernel supports priority
inheritance as a system to avoid priority inversions (a must
have in real-time systems), the bionic C libraries used in
Android do not provide this mutex configuration. As a result,
a C application cannot prevent priority inversions using this
library.

Our mutex behavior test for verifying this feature is depicted
in figure 6a.

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

45

Figure 6a: Mutex locking behavior without priority inheritance

This test creates three threads which are locked to the
same processor in order to avoid parallel execution on a multi-
processor system. The thread being active at a certain time is
shown in green in figure 6a. The low priority thread starts first.
It creates a semaphore with count zero. Then the medium
priority thread is created and activates immediately. The
medium priority thread tries to acquire the semaphore, but as
the semaphore count is zero, it blocks on the semaphore
(shown in yellow). The low priority thread activates again and
continues execution; it creates a mutex for which it takes
ownership and then creates a high priority thread, which
activates immediately. The high priority thread tries to acquire
the mutex owned by the low priority thread, and thus blocks
(shown in red). As a result, the low priority thread becomes
active again. Now the low priority thread releases the
semaphore where after it releases the mutex.

In the non-priority inheritance case (using the Bionic
C-library), the medium priority thread will start upon the
semaphore release and thus keeps the high priority thread
blocked for a long time (until it blocks or a higher priority
thread becomes runnable). This means, in such case, a lower
priority thread delays unintentionally a higher priority thread,
which is by definition an unwanted priority inversion. Finally
the medium priority thread ends and the low priority thread
activates again. At this moment, the low priority thread will
release the mutex, which will unblock the high priority thread
and activates immediately.
Our test generates the following tracing numbers: (1) before
the semaphore release, in the low priority thread context; (2)
after the semaphore request in the medium priority thread
context; (3) after becoming mutex owner in the high priority
thread context. These traces are shown in figure 6a. Without
any priority inversion protection mechanism present, the
tracing results will have this order: (1), (2) and (3).

Figure 6b shows the theoretical behavior of a system
supporting a priority inversion protection mechanism: in this
picture priority-inheritance. Some tested OS like Linux-

PREEMT_RT, Windows Embedded Compact 7 and QNX
show this behavior and can be found in [14].

Figure 6b: Mutex locking behavior with priority inheritance

In case the mutex supports priority inheritance, the low
priority thread will inherit the priority of the high priority
thread when it requests the mutex. Thus the lock owner
inherits the (higher) priority of the thread blocked on the lock.
The low priority thread will in this case execute as it is a high
priority thread. It releases the semaphore first. As a result, the
semaphore release will not wake-up the medium priority
thread, but the low priority thread will continue. It releases the
mutex; at this point, the priority inheritance finishes and the
low priority thread goes back to its original priority level
(low). The high priority thread will be unblocked. Under such
circumstances, the test tracing points are shown in this order
(1), (3) and (2).
The lack of mutex priority inheritance support is another
reason to disqualify Android as a candidate for real-time
systems.

5. PROPOSED SOLUTIONS FOR MAKING
REAL-TIME ANDROID

There are different approaches discussed in [3] [16]
to incorporate the desired real-time behavior into the Android
architecture. The first approach considers the replacement of
the Linux operating system along with its Completely Fair
Scheduler (CFS) [17], and replaces it with a real-time version
of Linux. Remark that this was not a trivial task for Linux
kernels before version 3.3 as the android kernel patches were
not integrated in the mainline kernel yet. Starting from Linux
v3.3, most important Android patches are now part of the
vanilla kernel.
The second approach respects the Android standard
architecture by proposing the extension of Dalvik as well as
the substitution of the standard operating system by a real-
time Linux-based operating system. [3][16]
The third approach simply replaces the Linux operating
system by a Linux real-time version. This is however not
enough: real-time threads should use the kernel directly or use
glibc/uClibc instead of the bionic C library.
Finally, the fourth approach proposes the addition of a real-
time hypervisor that supports the parallel execution of the

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

46

Android platform in one partition while the other partition is
dedicated to the real-time applications. [3] [16]

When building the real-time applications, there is a
need as well for a communication channel between these
applications and the Android system. Such a communication
channel should not affect the timing behavior of the real-time
threads.
Each of these approaches has its advantages and drawbacks as
explained in [3] [16]. This means there is not a ready mature
solution that can let Android be qualified to be used for real
time purposes.

Recently, a research work “A Real-time Extension to
the Android Platform” [18] was published, in which the
authors use the RT_PREEMPT patch to equip Android’s
Linux kernel with basic real-time support and improved the
Dalvik garbage collection. Although, this is a step in the good
direction to enhance Android for real-time applications, our
research shows that the major problem is not only about
scheduling but also about the Bionic libraries’
implementation. As long as this library is not replaced or
enhanced, priority inversion together with the long delays will
result in deadline misses when trying to build an Android
based real-time systems.

A solution could exist by combining both the
Android stack and the Linux software stack, on one device. A
lockless communication system could then be made between
them. Such a system is shown in Figure 7 and is part of our
future research work.

Figure 7: Combining both software stacks on one platform

6. CONCLUSION
Initially, Android was not meant to be used in real-

time applications. It is a Java executable platform consuming
as less power as possible for handheld devices with an
attractive Graphical User Interface. Of course, one cannot
avoid that some people try to use it in a real-time context
based on its popularity only.

The current research about real-time Android is focusing on
the real-time capabilities of the kernel. A real-time OS is
however much more than just a scheduling issue. Although
you can build an Android device using a PREEMPT_RT
kernel [18], other real-time capabilities won’t be present. This
is because of the Bionic C library which does not implement
the features and behavior that are mandatory to have a real-
time system. For example, Bionic does not have the priority
inversion protection mechanisms available on mutexes. Also
the semaphore implementation behaves badly: it is
implemented as a purely FIFO queued one without any
prioritization and release times are going straight through the
top once multiple threads are blocked on the same semaphore.
This behavior is bad even for non-real-time systems.

Although Android has many recent releases, the Bionic
library is still not enhanced to support at least the priority
inheritance feature in the pthread header file [19].

Today, the Android platform is inappropriate to fulfil real-
time requirements of any kind. An Android subsystem
playing the role of a GUI towards another real-time
subsystem is the only possible immediate system design
scenario.

REFERENCES

[1] Google, “Android,” [Online]. Available: www.android.com.
[Accessed 2013].

[2] T. Bray, “Ongoing by Tim Bray-What Android Is,” November
2010. [Online]. Available:
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-
Android-Is

[3] C. Maia, L. M. Nogueira and L. M. Pinho, “Evaluating Android
OS for Embedded Real-Time Systems,” in Proceedings of the 6th
International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, Brussels, Belgium, 2010.

[4] S. M. Bhupinder and K. M. Vijay, “Reliable Real-Time
Applications on Android OS,” 2010. [Online]. Available:
http://users.ece.gatech.edu/~vkm/Android_Real_Time.pdf.

[5] Google, “Android SDK,” [Online]. Available:
http://developer.android.com/sdk/index.html.

[6] K. Tapas Kumar and P. Kolin, “Android on Mobile Devices: An
Energy Perspective,” in 2010 IEEE 10th International Conference on
Computer and Information Technology (CIT), 2010.

[7] CrystaX, “CrystaX .NET,” [Online]. Available:
http://www.crystax.net/nl/android/ndk/7.

[8] Linaro, “Linaro: Open source software for ARM SoCs,” [Online].
Available: http://www.linaro.org/.

[9] Android, “Linaro Android Build Service,” [Online]. Available:
https://android-build.linaro.org/.

Vol. 4.Special Issue ICCSII ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2013 CIS Journal. All rights reserved.

http://www.cisjournal.org

47

[10] Android, “android.git.linaro.org Git,” [Online]. Available:
http://android.git.linaro.org/gitweb.

[11] S. Agam, “Google's Android 4.0 ported to x86 processors,” 1
December 2011. [Online]. Available:
http://www.computerworld.com/s/article/9222323/Google_s_Android
_4.0_ported_to_x86_processors.

[12] BeagleBoard, “BeagleBoard.org-default,” [Online]. Available:
http://www.beagleboard.org

[13] F. Sheikh and D. Driscoll, “Measuring RTOS performance:
What? Why? How?,” 2011. [Online]. Available:
http://www.eetimes.com/electrical-engineers/education-training/tech-
papers/4219481/Measuring-RTOS-Performance-What-Why-How.

[14] D. S. Experts, “RTOS evaluation Reports and related papers,”
[Online]. Available: http://download.dedicated-systems.com.

[15] Google, “/libc/bionic/semaphore.c,” [Online]. Available:
https://android.googlesource.com/platform/bionic/+/android-
4.2.2_r1/libc/bionic/semaphore.c.

[16] B. Cole, “Real-time Android: real possibility, really really hard
to do - or just plain impossible?,” 2012. [Online]. Available:
http://www.embedded.com/electronics-blogs/cole-bin/4372870/Real-
time-Android--real-possibility--really-really-hard-to-do---or-just-
plain-impossible--.

[17] IBM, “Inside the Linux 2.6 Completely Fair Scheduler,”
[Online]. Available: http://www.ibm.com/developerworks/library/l-
completely-fair-scheduler/.

[18] I. Kalkov, B. Franke and J. Schommer, “A Real-time Extension
to the Android Platform,” in Proceedings of the 10th International
Workshop on Java Technologies for Real-time and Embedded
Systems, Copenhagen, Denmark, 2012.

[19] Google, “/libc/include/pthread.h,” [Online]. Available:
https://android.googlesource.com/platform/bionic/+/android-
4.2.2_r1/libc/include/pthread.h

[20] M. H. Klein, T. Ralya, B. Pollak, R. Obenza and M. G. Harbour,
A practitioner's Handbook for Real-Time Analysis, USA: Kumer
Academic Publishers, 1994. ISBN 0-7923-9361-9.

