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A significant amount of research work in user interface design exists with a proportion of this extendable 

platforms. Some investigate the effect of user ability on interface generation for mobile applications. Other works analyzed 

how different contexts and mobile platforms affect the generation of these interfaces. However, most of these exist

works require a significant degree of context requirements modeling before interface reconfiguration takes place. Few on

the-fly reconfiguration approaches exist that learn from user interactions as well as contextual information received by a 

mobile phone. With the explosive growth of new applications for the mobile phone, its user interface is quickly becoming 

flooded with application widgets. This work investigates some on

user interactions and contextual information received by the mobile phone. Performance evaluations demonstrate how a 

simple neural network-based engine is able to improve the prediction accuracy of the interface reconfiguration in a mobile 

phone. 
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1. INTRODUCTION 
 

People are becoming increasingly dependent on 

mobile information devices. With increased pervasiveness 

of wireless connectivity and technology advancements, the 

smart mobile phone is progressively taking on more 

important roles to process, collate and delegate 

information. A contemporary mobile handset typically 

comes with many integrated features, which previously 

were available only on desktop PCs or laptops such as

internet access, email, word processing, and video 

viewing. An increasing number of mobile phones are also 

equipped with additional hardware like sensors to extend 

its capabilities e.g. the accelerometer in the Samsung 

Blade S5600v [31], the motion recognition sensor in the 

Samsung S310 [29], the proximity sensor in the HTC 

Touch Pro 2 [25], and the Nokia 5500’s tilt sensor that 

supports novel game genres [28]. Together with better 

processing power, these mobile phones have become mini 

multimedia computers proffering support for an increasing 

spectrum of new applications and features.

However, these technological enhancements to a 

mobile phone also herald a new set of user problems. 

the number of supported widgets increases, widget 

management becomes increasingly complex. Locating 

relevant or interesting widgets becomes a chore as the user 

interface gets cluttered with irrelevant widgets

recent study [22], most new mobile phone owners 

indicated that they were adverse to using new services that 

were confusing or difficult to access.

mobile phones address these problems partially via screen 

organization tools like window managers, widget toolbars 

[31] or multiple home screen pages or scenes

of these tools requires proficiency with the mobile phone’s 

key controls to be able to correctly and efficiently re

organize the screen’s application widgets.  For example, in 

the HTC Hero [24], each scene must be pre

the user with appropriate widgets for different contexts 

e.g. work, travel, social etc. and are non-adaptive.
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People are becoming increasingly dependent on 

mobile information devices. With increased pervasiveness 

of wireless connectivity and technology advancements, the 

t mobile phone is progressively taking on more 

important roles to process, collate and delegate 

information. A contemporary mobile handset typically 

comes with many integrated features, which previously 

were available only on desktop PCs or laptops such as 

internet access, email, word processing, and video 

viewing. An increasing number of mobile phones are also 

equipped with additional hardware like sensors to extend 

its capabilities e.g. the accelerometer in the Samsung 

ition sensor in the 

Samsung S310 [29], the proximity sensor in the HTC 

Touch Pro 2 [25], and the Nokia 5500’s tilt sensor that 

supports novel game genres [28]. Together with better 

processing power, these mobile phones have become mini 

proffering support for an increasing 

spectrum of new applications and features. 

However, these technological enhancements to a 

mobile phone also herald a new set of user problems. As 

the number of supported widgets increases, widget 

reasingly complex. Locating 

relevant or interesting widgets becomes a chore as the user 

interface gets cluttered with irrelevant widgets [17]. In a 

study [22], most new mobile phone owners 

indicated that they were adverse to using new services that 

were confusing or difficult to access. Contemporary 

mobile phones address these problems partially via screen 

window managers, widget toolbars 

scenes [23]. Usage 

ncy with the mobile phone’s 

key controls to be able to correctly and efficiently re-

organize the screen’s application widgets.  For example, in 

the HTC Hero [24], each scene must be pre-specified by 

the user with appropriate widgets for different contexts 

adaptive. 

When changes occur over time in a mobile phone 

user’s lifestyle and/or roles, new applications may need to 

be downloaded, existing applications may be upgraded or 

older applications rendered obsolete. In

manual widget re-organization would have to be 

performed repeatedly with the above tools. This can be 

both tedious and time consuming.

From a mobile phone user’s perspective, some 

degree of intelligent widget control should be provided as 

one goes about his/her daily activities. For instance, a user 

driving to work will more likely use the phone in “hands

free” mode for voice communications instead of SMS or 

email. A student who normally uses the phone for 

entertainment and social interaction w

during curriculum time. It is also less likely that an 

employee would want to invoke a game application or 

view a movie at the work place than when travelling via 

public transport or resting at home in the evening. 

Similarly, a mobile business executive or tourist may 

place more emphasis on GPS and location

applications and functionality than an office

employee, albeit using different categories of services. We 

ask the following questions: 

 

• Does a user need all or even most 

phone’s capability?  

• Does a user need the same subset of applications 

and functionality all the time?

• Can a mobile phone be made to learn and 

recognize a user’s context?

 

It is quite apparent that different subsets of a 

mobile phone’s capabilities appeal to different users 

depending on roles/interests. On a regular basis, many 

users also make use of specific applications and 

functionality in a fairly deterministic pattern depending on 

context. A typical mobile phone user’s context may be 

defined in terms of usage pattern, date, time of day, and 

location as a basis. With the aid of suitable sensor inputs, 
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When changes occur over time in a mobile phone 

user’s lifestyle and/or roles, new applications may need to 

be downloaded, existing applications may be upgraded or 

older applications rendered obsolete. In such cases, 

organization would have to be 

performed repeatedly with the above tools. This can be 

both tedious and time consuming. 
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additional contextual information may be gleaned e.g. how 

far has the user moved from the previous location, how 

fast is the user moving now, heart rate (stress level) etc. 

However, at the time of this paper, there is no reported 

work that offers a learning engine with dynamic context

aware reconfiguration of a mobile phone interface. As a 

consequence, mobile phone users would have to 

constantly navigate through and manually reconfigure a 

complex and confusing set of excess widgets that they 

either do not need or no longer use.  
 

 

2. MOTIVATION AND CHALLENGES
 

As mobile phones become a necessity to the daily 

lives of most people, there is a need to find 

solution to the issues highlighted previously. As the 

population is also graying in several countries, there may 

be more users who will encounter difficulties with the 

interfaces of contemporary mobile phones [15].

Currently, there is no reported mobile phone 

engine that is able to learn and automatically reconfigure 

the interface widgets based on a user’s context. As an 

example, a user’s context could be defined by time, 

location, traffic condition, phone usage pattern and even 

personal biometrics like heart/perspiration rate etc. 

Currently, widgets will reside on the mobile phone 

interface even if the user has not used the applications for 

an extended period of time. These widgets will remain 

until the user specifically removes the application

Similarly, when new applications are installed, the user 

can either manually organize the corresponding widgets or 

just allow the widget “clutter” to get worse. Reasons for 

the lack of such capability could include anticipated high 

processing overheads, development constraints and 

potential increased access complexity introduced by such 

engines [18]. 

With an efficient context-aware reconfiguration 

engine, however, users need not expend considerable 

effort to navigate and locate a particular application as

system will automatically select, retrieve and display the 

icons most likely to be used for that user. An intelligent 

reconfiguration engine will also learn from the perceived 

context and suitably adapt the interface for the user [18] 

doing away with frequent manual reconfiguration. 

Challenges facing the development of such an engine 

would then include: 

 

• Need for a simple and efficient design that would 

not introduce unnecessary overheads or more 

complexity to the user interface.

• The engine must be transparent to the user while 

working in tandem with the operating system of 

the mobile phone  

• The engine must learn and automatically adapt 

the interface according to the specified context 

 

This paper proposes an intelligent, context

interface reconfiguration engine prototype for the mobile 

phone called SmartIFace and is organized as follows. 
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development constraints and 

potential increased access complexity introduced by such 
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effort to navigate and locate a particular application as the 

system will automatically select, retrieve and display the 

icons most likely to be used for that user. An intelligent 

reconfiguration engine will also learn from the perceived 

context and suitably adapt the interface for the user [18] 

frequent manual reconfiguration. 

Challenges facing the development of such an engine 

Need for a simple and efficient design that would 

not introduce unnecessary overheads or more 

complexity to the user interface. 

sparent to the user while 

working in tandem with the operating system of 

The engine must learn and automatically adapt 

the interface according to the specified context  

This paper proposes an intelligent, context-aware 

ration engine prototype for the mobile 

and is organized as follows. 

Section 1 provides the background of the existing situation 

and associated problems while Section 2 presents the 

motivation and challenges behind the research. Sect

presents a review of related research. Design details of the 

system architecture and learning engine are in Sections 4 

and 5. Section 6 presents the system test results as well as 

a performance analysis and evaluation. The paper 

concludes with Section 7 followed by the references.

 

3. REVIEW OF EXISTING R
 

The following systems, Supple, Gaze

Dynamo-AID, Situations and MIMIC, make use of 

contextual information that is typically user

generate user interfaces. Some of these interfaces

exported to mobile phone platforms via additional 

mechanisms. 
 

SUPPLE 
 

Supple [11] automatically generates user 

interfaces according to the user’s physical ability, device 

and usage. Supple is able to create personalized interfaces 

better suited to the contexts of individual users. Users with 

physical limitations and impairments form a particular 

group targeted by Supple. A subsystem called Ability 

Modeler performs a one-time assessment of a person’s 

motor ability and builds a model of those abilitie

result is used during interface generation. These 

automatically generated interfaces greatly improve the 

speed, accuracy and satisfaction of users with motor 

impairments. 

A subsystem called Arnauld is also used to obtain 

user responses to generate a

approximates the desired behavior. An optimization 

algorithm determines the user interface that satisfies the 

platform device’s constraints while minimizing the cost 

function. By supplying different device constraints and 

cost functions, different styles of user interfaces may be 

produced. However, Supple’s functionality is currently 

restricted to window-based interfaces found on desktop 

platforms. Although Supple is written in Java, it is 

currently unable to run on a mobile phon

libraries from Java SE. 

 

GAZE-X 
 

Gaze-X [16] is an agent

that supports multimodal human

The system comprises 2 main parts 

and context sensing. It models user’s actions and emotio

and then adapts the interface to support the user in his 

activities. The context information, known as W5+ (who, 

where, what, when, why, how), is obtained through a 

number of human communication modalities, such as 

speech, eye gaze direction, face and f

a number of standard interface modalities like mouse 

moves, keystrokes and active software identification. 

Various commercially available solutions such as voice 
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contextual information that is typically user-specified, to 

generate user interfaces. Some of these interfaces can be 

exported to mobile phone platforms via additional 

Supple [11] automatically generates user 

interfaces according to the user’s physical ability, device 

and usage. Supple is able to create personalized interfaces 

the contexts of individual users. Users with 

physical limitations and impairments form a particular 

group targeted by Supple. A subsystem called Ability 

time assessment of a person’s 

motor ability and builds a model of those abilities. The 

result is used during interface generation. These 

automatically generated interfaces greatly improve the 

speed, accuracy and satisfaction of users with motor 

A subsystem called Arnauld is also used to obtain 

user responses to generate a cost function that closely 

approximates the desired behavior. An optimization 

algorithm determines the user interface that satisfies the 

platform device’s constraints while minimizing the cost 

function. By supplying different device constraints and 

unctions, different styles of user interfaces may be 

produced. However, Supple’s functionality is currently 

based interfaces found on desktop 

platforms. Although Supple is written in Java, it is 

currently unable to run on a mobile phone as it uses 

X [16] is an agent-based intelligent system 

that supports multimodal human-computer interaction. 

The system comprises 2 main parts – context modeling 

and context sensing. It models user’s actions and emotions 

and then adapts the interface to support the user in his 

activities. The context information, known as W5+ (who, 

where, what, when, why, how), is obtained through a 

number of human communication modalities, such as 

speech, eye gaze direction, face and facial expression, and 

a number of standard interface modalities like mouse 

moves, keystrokes and active software identification. 

Various commercially available solutions such as voice 
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recognition software, image processing software are 

required for the multimodal inputs. 

The inference engine used is based on case

reasoning, a type of lazy learning method [3]. Lazy 

learning methods store the current input data and postpone 

the generalization of data until an explicit request is made. 

The case-base used is a dynamic, incrementally self

organizing, event-content-addressable memory that allows 

facts retrieval and events evaluation based on user 

preferences and generalizations formed from prior inputs. 

Based on the evaluation, Gaze-X will execute the most 

appropriate user-supportive action. The case

reasoning can also unlearn actions according to user 

instructions and thereby increasing its expertise in user

profiled, user-supportive, intelligent interaction.

Gaze-X runs in either unsupervised or supe

modes. In the unsupervised mode, the user’s affective state 

is used to decide on his satisfaction with the executed 

action and adaptive, user-supportive actions are executed 

one at a time. In the supervised mode, the user explicitly 

confirms that a preferred action has been executed and 

may provide feedback to the system. Gaze

setup initially in the supervised mode to build up the 

profile of the user using the system. Once the system has 

captured enough cases of the user, the system would

be able to operate correctly in the unsupervised mode. 

Gaze-X currently runs only on desk-top platforms based 

on Linux, Windows, or Mac Os X. 

 

DYNAMO-AID 
 

Dynamo-AID (Dynamic Model

Interface Development) [4-5] is a design process that 

includes a proposed runtime architecture to develop user 

interfaces for context-aware systems. However, the 

designer must first construct the declarative models which 

specify the interactions. Next, the models are serialized to 

an XML-based high-level user interface description 

language to be exported to the runtime architecture. After 

serialization, the designer can render a prototype to adjust 

any undesirable aspects of the interface. Lastly, the final 

user interface can be deployed on the target platform.

An XML-based meta-language, DynaMOL, is 

used for the exportation and transportation of models to 

the runtime architecture. A preliminary implementation of 

the runtime architecture has been tested on top of the 

Dygimes framework (Dynamically Generating Interf

for Mobile Computing Devices and Embedded System) 

[6]. The architecture consists of a dialog controller which 

takes care of the changes to user interface. These changes 

can be caused by user interaction or context changes.

 

SITUATIONS 
 

Situations[7] is an extension to the context

infrastructure called the Context toolkit [8]. It supports 

easier building of context-aware applications by 

facilitating access to application states and behavior. It 

exposes an API to the internal logic of a context
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language, DynaMOL, is 

used for the exportation and transportation of models to 

the runtime architecture. A preliminary implementation of 

the runtime architecture has been tested on top of the 

Dygimes framework (Dynamically Generating Interfaces 

for Mobile Computing Devices and Embedded System) 

[6]. The architecture consists of a dialog controller which 

takes care of the changes to user interface. These changes 

can be caused by user interaction or context changes. 

an extension to the context-aware 

infrastructure called the Context toolkit [8]. It supports 

aware applications by 

facilitating access to application states and behavior. It 

exposes an API to the internal logic of a context-aware 

application. Context information from sensors or users is 

made available to the application and application logic is 

used to acquire and analyze inputs, issue or execute 

context outputs when appropriate. The application logic 

consists of creating a “situation” with an information 

description that it is interested in and the actions 

associated with the “situation”. It would consist of a 

number of context rules and the situation will handle the 

remaining logic discovery, individual sources of context 

and data and determining when input is relevant and 

executing the appropriate services.

Context input is handled by widgets and context 

output by services. The capture of context input is made 

easier by the fully declarative mechanism provided by 

Situations’ references. Situations’ listeners provide all the 

necessary functionalities to obtain real

default listener called Tracer provides indications of the 

current status of variables, origins of the variables, and 

current state of the context rul

applications would need to implement customized 

methods to access application logic. Situations provide 

standard access and allow arbitrary applications to provide 

intelligibility and control interaction for context

applications and interfaces can be built independent of the 

main application. 
 

MIMIC 
 

Eisenstein et al. [10] proposed a set of model

based techniques that may aid designers to build UIs 

across several platforms, while respecting the unique 

constraints posed by each platform. The approach will 

isolate the features that are common to the various 

contexts of use and specify how the user interface should 

adjust when the context changes. 

Knowledge bases are created that describe 

various components of the user interfa

presentation, the platform, the task structure, and the 

context. The knowledge base can then be used to 

automatically produce user interfaces matching the 

requirements of each context of use. The user interface is 

defined as a implementation-

MIMIC modeling language. MIMIC is a formal 

declarative modeling language that comprises of 3 

components – platform model, presentation model, and 

task model. 

The platform model describes the computer 

systems running the user interface and the platform’s 

constraint information. The platform model can then be 

used to generate a set of user interfaces for each platform. 

It can also be dynamic and changes accordingly to context 

changes. The presentation model describes the visual 

appearance of the user interface. It describes the hierarchy 

of windows and their widgets, stylistic choices and the 

selection and placement of these widgets. The task model 

represents the structure of the tasks that the user may be 

performing. It is hierarchically decomposed into subtasks 

and information regarding goals, preconditions and post 

conditions may be supplied.  
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The connections, especially those between the 

platform and presentation models, are critical to the 

determination of the interface’s interactive behavior. 

These connections also describe how the various platform 

constraints will influence the visual appearance of the user 

interface. Several techniques were described for the 

creation of connections between the various models and 

the interpretations of these. However, the automated 

generation of task-optimized presentation structures using 

MIMIC has not been developed yet. 

 

4. REVIEW SUMMARY 
 

Table 1 summarizes the characteristics of the 

systems reviewed. From the reviews, it can be seen that 

the common design approach is based on capturing or 
 

 

Table 1: Comparison Summary of Surveyed Context

System 
Development 

Language

Supple Java

 

Gaze-X 

 

 

Dynamo-AID Java, .Net

Situations Java, .Net, Flash

MIMIC  

SmartIFace JME

 

 

5. SYSTEM DESIGN 
 

The design of the system architecture and 

learning process are detailed in this section. We first 

present the problem formulation. 

 

PROBLEM FORMULATION 
 

We define the following for a mobile phone such that

 

NDT WWW ∪= : 

TW : set of all widgets for the mobile phone

DW : set of all widgets displayed on the interface

NW : set of all widgets not displayed on the interface 

 

Let C(u) represent the context tuple for user 

P(w,C(u)) be the probability of selecting widget 
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interface. Several techniques were described for the 

creation of connections between the various models and 

etations of these. However, the automated 

optimized presentation structures using 

Table 1 summarizes the characteristics of the 

systems reviewed. From the reviews, it can be seen that 

common design approach is based on capturing or 

abstracting contextual information via models or 

“situations” and then translating these to a required 

platform. Two main techniques were used predominantly 

for context modeling – model

certain amount of expertise may be found in some of these 

approaches via the production, storage and maintenance of 

case-bases, context rules. But these approaches focus 

mainly on the use of context information for interface 

generation. None of the syste

learning capability. Only Gaze

which enables the user to manually change context 

actions. In this paper, rule-based technique is chosen for 

the specification of contextual information while dynamic 

learning capability is implemented with neural network 

techniques. 
 

Comparison Summary of Surveyed Context-Aware Systems

 

Development 

Language 
Platforms 

Context 

Modelling 
Learning capability

Java Desktop Model-based 

 Desktop Context- based Feedback system

Java, .Net 
Desktop, 

Mobile 
Model-based 

Java, .Net, Flash Desktop Rule-based 

Runtime change to 

context rules and 

 
Desktop, 

Mobile 
Model-based 

JME 
Desktop, 

Mobile 

Dynamic 

Context-based 

The design of the system architecture and 

learning process are detailed in this section. We first 

We define the following for a mobile phone such that: 

: set of all widgets for the mobile phone 

: set of all widgets displayed on the interface 

: set of all widgets not displayed on the interface  

le for user u and 

be the probability of selecting widget w based 

on the context C(u). In our 

define: 

 

C(u) = [time, location

widget_use[day]] 

Then, if k widgets are to be displayed such that

},...,,{ 21 kD wwwW = , we require 

,())(,( CwPuCwP ji >

Nj Ww ∈ . 

 

6. SYSTEM ARCHITECTURE
 

The system architecture shown in Figure 1 

comprises of the following modules 

Learning Engine, RMS (Record Management System) and 

Rule-Base Engine. The mobile phone user interacts with

the screen and that is usually captured by the phone OS. 

The proposed system can be viewed to be interposed 
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abstracting contextual information via models or 

“situations” and then translating these to a required 

platform. Two main techniques were used predominantly 

model-based and rule-based. A 

certain amount of expertise may be found in some of these 

approaches via the production, storage and maintenance of 

bases, context rules. But these approaches focus 

mainly on the use of context information for interface 

generation. None of the systems incorporates dynamic 

learning capability. Only Gaze-X has a feedback module 

which enables the user to manually change context 

based technique is chosen for 

the specification of contextual information while dynamic 

apability is implemented with neural network 

Aware Systems 

Learning capability 

 

Feedback system 

 

Runtime change to 

context rules and 

variables 

 

Neural net 

. In our SmartIFace prototype, we 

location, traffic, heart rate, 

widgets are to be displayed such that

, we require 

))(uC  for all 1 ≤ i ≤ k and 

SYSTEM ARCHITECTURE 

The system architecture shown in Figure 1 

comprises of the following modules – GUI Manager, 

(Record Management System) and 

The mobile phone user interacts with 

the screen and that is usually captured by the phone OS. 

The proposed system can be viewed to be interposed 
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between the screen and the phone OS. 

simulates the supply of sensor- and location

information to the system. A timer module (
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated external inputs include GPS location 

information, time of day, traffic conditions and heart 

condition. The GUI manager records user interaction when 

application widgets are accessed. Together, these form the 

contextual information that is passed to the learning 
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between the screen and the phone OS. External Inputs 

and location-based 

information to the system. A timer module (not shown) 

simulates the transition of time for performance analysis 

and evaluation. 
 

 

Figure 1: System Architecture 

Simulated external inputs include GPS location 

information, time of day, traffic conditions and heart 

records user interaction when 

application widgets are accessed. Together, these form the 

contextual information that is passed to the learning 

engine. Interface re-configuration is based on commands 

from the learning engine referencing rules in the rule

engine. The RMS handles rule storage in the mobile 

phone. 

Stop

Re-arrange usage 

pattern for 

learning process

Processed all 

widgets?

Retrieve rule 

for widget

Set counters 

for statistics

Process 

current data 

using 

specified 

algorithm

No
Pass 

parameter to 

rule base to 

fire the rule

Yes

Return the 

action of the 

fired rule to 

the calling 

program

Figure 2: Learning Process Flow 
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simulates the transition of time for performance analysis 

configuration is based on commands 

from the learning engine referencing rules in the rule-base 

engine. The RMS handles rule storage in the mobile 

parameter to 

action of the 

 

Rule-

Base 

Engine 

RMS 
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7. LEARNING PROCESS 
 

The learning engine will add widgets, remove 

widgets or maintain current screen state based on the 

results of its learning algorithm. The learning engine 

communicates with the rule-base engine for rules update 
 

Start
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The learning engine will add widgets, remove 

widgets or maintain current screen state based on the 

ts learning algorithm. The learning engine 

base engine for rules update 

and reference. The rule-base engine accepts parameters 

from the learning engine, fires the appropriate rules and 

returns the resultant action from the fired 

learning process flow is illustrated in Figure 2.
 

Stop

Load pre-

define context 

information

Manual 

Mode?

Load 

simulated 

user activity

After 7 days?

No

Process 

context rules

Yes

Widget 

changes?
Update tickerNo

Re-draw 

main menu

Yes

Process pattern in 

learning engine 

for each context

Yes

Update all 

context 

rules

Retrieve 

usage 

pattern

Update ne 
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Figure 3: Simulation Process Flow 
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base engine accepts parameters 

from the learning engine, fires the appropriate rules and 

returns the resultant action from the fired rule. The 

learning process flow is illustrated in Figure 2. 

No
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The learning engine is an integral part of the 

simulation process. The simulation process flow is 

illustrated in Figure 3. Besides simulating time 

progression, it will continuously capture users’ widget 

interactions and pass this information to the learning 

engine for processing. Changes to the context will cause 

context rules to be updated as shown in the rule

engine. The learning engine learns during an initial period 

of k days. In our simulation, we set k to 7 for a learning 

period of 1 week. After this initial period, the 

engine continuously communicates with the learning 

engine at a preset timing. As this may caus

in the mobile device’s operation, the preset timing was set 

to midnight when, it is assumed, that user interaction 

activity would be at its minimum. The timing can, 

however, be set to any appropriate user-specified timing.

After the learning engine has c

processing and returned the results, a decision will be 

made on whether to re-configure the screen widgets or 

maintain current display status. The action taken by the 

learning engine is determined by the type of learning 

algorithm implemented (explained in the next section). 

After the learning engine has performed its action, all 

widgets for the specified context will be processed for 

display state changes before the rule

appropriate rule and returns the action associated with the 

rule. The rule-base includes helper methods to support rule 

storage management. 

 

8. LEARNING ENGINE DESIGN
 

The objective of the learning engine is to 

determine trends from the usage pattern data in the current 

context. Three different learning algorithms were 
 

 

Figure 4: 
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The learning engine is an integral part of the 

simulation process. The simulation process flow is 

s simulating time 

progression, it will continuously capture users’ widget 

interactions and pass this information to the learning 

engine for processing. Changes to the context will cause 

context rules to be updated as shown in the rule-base 

ning engine learns during an initial period 

to 7 for a learning 

period of 1 week. After this initial period, the rule-base 

continuously communicates with the learning 

engine at a preset timing. As this may cause some latency 

in the mobile device’s operation, the preset timing was set 

to midnight when, it is assumed, that user interaction 

activity would be at its minimum. The timing can, 

specified timing. 

ng engine has completed pattern 

returned the results, a decision will be 

configure the screen widgets or 

maintain current display status. The action taken by the 

learning engine is determined by the type of learning 

orithm implemented (explained in the next section). 

After the learning engine has performed its action, all 

widgets for the specified context will be processed for 

display state changes before the rule-base fires the 

associated with the 

base includes helper methods to support rule 

LEARNING ENGINE DESIGN 

The objective of the learning engine is to 

determine trends from the usage pattern data in the current 

rning algorithms were 

developed for the learning engine: Minimal Intelligence 

(MI), Single Layer Perceptron with Error Correction 

(SLP) and Multi Layer Perceptron with Back Propagation 

(MLP).  

Witmate [30] and Joone [27] make use of several 

libraries not supported by Java ME, such as the Math class 

(no support for logarithmic, exponential, power etc), file 

input/output (text file not supported for Java ME), and 

event handling. As Witmate is a commercial program, no 

source code is available. Joone, on the ot

source and may be used for the creation of neural 

networks. Joone codes, however, cannot be pre

the Java ME platform. Therefore, to ensure complete 

compliance with the pre-verification process, customized 

code was developed. 

 

9. MINIMAL INTELLIGENCE
 

To reduce processing overheads, the MI 

algorithm uses only the most recent user activity for all 

widgets in the phone to decide whether to update rules as 

shown in Figure 4. Each widget has an indicator in the rule 

and the widget will be displayed for the context if the 

indicator is 1. The algorithm first checks if the current user 

activity for each widget is present or absent (1 or 0). If 

user activity is present and the rule indicator is 0 (user 

accessed the widget but widget is not d

include the widget in the rule. However, if user activity is 

absent and the rule indicator is 1 (user did not access the 

widget but widget is displayed), the widget is removed 

from the rule. MI does not track user activity pattern over 

time, only using the most recent user activity data on all 

widgets to set the rules. 
 

 

Figure 4: Minimal Intelligence Algorithm Process Flow 
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developed for the learning engine: Minimal Intelligence 

(MI), Single Layer Perceptron with Error Correction 

(SLP) and Multi Layer Perceptron with Back Propagation 

Witmate [30] and Joone [27] make use of several 

upported by Java ME, such as the Math class 

(no support for logarithmic, exponential, power etc), file 

input/output (text file not supported for Java ME), and 

event handling. As Witmate is a commercial program, no 

source code is available. Joone, on the other hand, is open 

source and may be used for the creation of neural 

networks. Joone codes, however, cannot be pre-verified by 

the Java ME platform. Therefore, to ensure complete 

verification process, customized 

MINIMAL INTELLIGENCE 

To reduce processing overheads, the MI 

algorithm uses only the most recent user activity for all 

widgets in the phone to decide whether to update rules as 

Each widget has an indicator in the rule 

be displayed for the context if the 

indicator is 1. The algorithm first checks if the current user 

activity for each widget is present or absent (1 or 0). If 

user activity is present and the rule indicator is 0 (user 

accessed the widget but widget is not displayed), it will 

include the widget in the rule. However, if user activity is 

absent and the rule indicator is 1 (user did not access the 

widget but widget is displayed), the widget is removed 

from the rule. MI does not track user activity pattern over 

ime, only using the most recent user activity data on all 
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10. SINGLE LAYER PERCEPTRON WITH 
ERROR CORRECTION 

 

The second algorithm is a modified Singl

Perceptron (SLP) with error correction. The SLP neural 

network is a simple feed forward neural network that 

consists of a single processing unit (cell). Each input to the 

cell is associated with a weight that can be positive or 

negative to indicate reinforcement or inhibition on the cell. 

The sigmoid function of the cell sums the products of the 

weighted inputs and adds a bias.  The bias adjustment 

(error correction) is based on the previous prediction. The 

SLP process flow is shown in Figure 5. 

 

Add widget 

to rule

Remove 

widget from 

rule

Yes

Yes

No

Figure 5: Single Layer Perceptron with Error Correction
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SINGLE LAYER PERCEPTRON WITH 

The second algorithm is a modified Single Layer 

Perceptron (SLP) with error correction. The SLP neural 

network is a simple feed forward neural network that 

consists of a single processing unit (cell). Each input to the 

cell is associated with a weight that can be positive or 

reinforcement or inhibition on the cell. 

The sigmoid function of the cell sums the products of the 

weighted inputs and adds a bias.  The bias adjustment 

(error correction) is based on the previous prediction. The 

11. MULTI LAYER PERCEPTRON WITH 
BACK PROPAGATION

 

The MLP consists of multiple layers of cells and 

permit more complex, non-linear relationships of input 

data to output results. There is an input layer, a hidden 

layer and an output layer. The input layer represen

weighted inputs to the hidden layer. The hidden layer 

results are computed and used as weighted inputs to the 

output layer. The output layer uses these weighted inputs 

to compute the final output. With Back Propagation, the 

output error is corrected by back propagating this error 

through the network and adjusting weights in each layer. 

Convergence can take some time depending on the 

allowable error in the output. 
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Is error 
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of weights 
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Single Layer Perceptron with Error Correction Process Flow
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LTI LAYER PERCEPTRON WITH 

BACK PROPAGATION 

The MLP consists of multiple layers of cells and 

linear relationships of input 

data to output results. There is an input layer, a hidden 

layer and an output layer. The input layer represents the 

weighted inputs to the hidden layer. The hidden layer 

results are computed and used as weighted inputs to the 

output layer. The output layer uses these weighted inputs 

to compute the final output. With Back Propagation, the 

by back propagating this error 

through the network and adjusting weights in each layer. 

Convergence can take some time depending on the 

Adjust 

weights  for 

error

 

Process Flow 
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The steps for the back propagation are (for 

learning data E and expected output C): 

 

1. Compute the forward propagation of E through 

the network (compute the weighted sums of the 

network, S, and the inputs, u, of every cell).

2. From the output, make a backward pass through 

the intermediate layers, computing the error 

values. 

a. For output cells o : erroro = (Co -

b. For all hidden cells i: errori = (∑w

– ui) 

 m – all cells connected to hidden cell

w – given weight,   u – 

 

3. Lastly, update the weights within the network as 

follows : 

Start

Add widget 

widget from 

Update 

weights
No

Figure 6: Multi
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The steps for the back propagation are (for 

Compute the forward propagation of E through 

the network (compute the weighted sums of the 

network, S, and the inputs, u, of every cell). 

ake a backward pass through 

the intermediate layers, computing the error 

- uo)uo(1 - uo)  

∑wm,i  erroro)ui (1 

all cells connected to hidden cell 

 cell input 

Lastly, update the weights within the network as 

a. For weights connecting hidden to output layers: 

w = w + ρ * erroro * u

b. For weights connecting hidden to input layers: w 

= w + ρ * error * ui 

 

The forward pass through the network computes 

the cell inputs and an output. The backward pass computes 

the gradient and the weights are then updated so that the 

error is minimized. The learning rate, ρ, 

amount of change that may take place for the weights. 

Although it may take longer for a smaller learning rate to 

converge, it can minimize the chance of overshooting the 

target. If the learning rate is set too high, the network may 

not converge at all. The process flow of MLP is shown in 

Figure 6. 
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Multi Layer Perceptron with Back Propagation Process Flow
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For weights connecting hidden to output layers: 

* uo 

ing hidden to input layers: w 

The forward pass through the network computes 

the cell inputs and an output. The backward pass computes 

the gradient and the weights are then updated so that the 

error is minimized. The learning rate, ρ, minimizes the 

amount of change that may take place for the weights. 

Although it may take longer for a smaller learning rate to 

converge, it can minimize the chance of overshooting the 

target. If the learning rate is set too high, the network may 

ge at all. The process flow of MLP is shown in 

upper 

lower 

 

tion Process Flow 
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(a) SLP Weekly (Car)            (b) SLP 

     

 

 

 

 

 

 

 

 

 

(a) SLP Daily (Car)           (b) SLP 

Figure 7: Screen Shots of SLP, MI and MLP in action

 

 

PERFORMANCE TESTING 
 

Testing focuses on the prediction a

usage pattern by the MI, SLP and MLP learning 

algorithms. Usage pattern comprises widget interaction 

activity, user location, time, traffic conditions and heart 

condition. Table 2 summarizes the overall performance.

 

DETERMINATION OF SUITABLE 

THRESHOLDS 
 

SLP and MLP algorithms require setting 

appropriate thresholds to determine the output of the 

neural network. Selecting an appropriate threshold 

improves prediction accuracy of user activity. However, 

this is complicated as the output of the sigmoi

function used is non-linear. Hence, the upper and lower 
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b) SLP Weekly (Office)         (c) MI Weekly (Office)              (d) MLP 

      

(b) SLP Daily (Office) (c) MI Daily (Office)           (d) MLP 

 
Figure 7: Screen Shots of SLP, MI and MLP in action 

Testing focuses on the prediction accuracy of 

usage pattern by the MI, SLP and MLP learning 

algorithms. Usage pattern comprises widget interaction 

activity, user location, time, traffic conditions and heart 

condition. Table 2 summarizes the overall performance. 

DETERMINATION OF SUITABLE 

SLP and MLP algorithms require setting 

appropriate thresholds to determine the output of the 

neural network. Selecting an appropriate threshold 

improves prediction accuracy of user activity. However, 

this is complicated as the output of the sigmoid activation 

linear. Hence, the upper and lower  

 

 

 

thresholds were designed to be adaptive according to 

usage data patterns specified for learning.

 

SELECTION OF TEST SCENARIOS
 

Since a mobile phone platform is not suitable for 

file operations, the test environment could not be based on 

file inputs. Manual data entry was not practical as there 

was more than 20 days of user activity data. A special 

function, loadActivity( ), was implemented for the loading 

of test environments onto the mobil

categories of test scenarios were created for each learning 

algorithm – weekly repeating user activity pattern and 

daily repeating user activity pattern. This enables 

algorithmic performance under a range of conditions to be 

analyzed and evaluated. A parameter decides the category 

of testing scenario to be used and loaded into a vector. At 

the end of each day, the next day’s data is loaded. Figure 7 

shows some screen shots in different contexts.
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(d) MLP Weekly (Car) 

   

(d) MLP Daily (Car) 

thresholds were designed to be adaptive according to 

usage data patterns specified for learning. 

SELECTION OF TEST SCENARIOS 

Since a mobile phone platform is not suitable for 

ions, the test environment could not be based on 

file inputs. Manual data entry was not practical as there 

was more than 20 days of user activity data. A special 

, was implemented for the loading 

of test environments onto the mobile phone. Two main 

categories of test scenarios were created for each learning 

weekly repeating user activity pattern and 

daily repeating user activity pattern. This enables 

algorithmic performance under a range of conditions to be 

evaluated. A parameter decides the category 

of testing scenario to be used and loaded into a vector. At 

the end of each day, the next day’s data is loaded. Figure 7 

shows some screen shots in different contexts. 
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Table 2: Summary Overview of Prediction A

 

Minimal Intelligence (MI)

Single Layer Perceptron with Error 

Correction (SLP)

Multi Layer Perceptron with 

BackPropagation (MLP)

 

MINIMAL INTELLIGENCE ALGORITHM
 

Test results show that MI is unable to accurately 

predict user activities. Prediction is based on the previous 

day data and the percentage of correct predictions is the 

lowest among all three algorithms. For the weekly 

repeating usage patterns (Figure 8), there are not many 

repeated activity patterns for a given context. This causes 

the MI algorithm to have low accuracy that tapers off at 

around 30% after 3 weeks. It is still able to achieve 30% 

because at any time, four different contexts are used

the learning process and this enables the algorithm to at 

least distinguish and identify to a certain extent, the 

context used. For the daily repeating usage pattern, the MI 

algorithm is able to achieve higher accuracy than the 

previous two usage patterns as there are more repeated 

activities (Figure 9). 

 

Figure 10: SLP Prediction Accuracy for weekly 

repeating usage pattern

 

Figure 11: SLP Prediction Accuracy for daily repeating 

usage pattern 
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Table 2: Summary Overview of Prediction Accuracy

 

Daily repeating usage 

pattern 

Weekly repeating 

usage pattern

Minimal Intelligence (MI) 57.6% 32.4%

Single Layer Perceptron with Error 

Correction (SLP) 
97% 61%

Multi Layer Perceptron with 

BackPropagation (MLP) 
97% 61.9%

LGORITHM 

Test results show that MI is unable to accurately 

predict user activities. Prediction is based on the previous 

day data and the percentage of correct predictions is the 

lowest among all three algorithms. For the weekly 

gure 8), there are not many 

repeated activity patterns for a given context. This causes 

the MI algorithm to have low accuracy that tapers off at 

around 30% after 3 weeks. It is still able to achieve 30% 

because at any time, four different contexts are used for 

the learning process and this enables the algorithm to at 

least distinguish and identify to a certain extent, the 

For the daily repeating usage pattern, the MI 

algorithm is able to achieve higher accuracy than the 

erns as there are more repeated 

 

Figure 10: SLP Prediction Accuracy for weekly 

repeating usage pattern 

 

Figure 11: SLP Prediction Accuracy for daily repeating 

 
Figure 12: MLP Prediction Accuracy for 

usage pattern

 

MULTI LAYER PERCEPTRON WITH 

BACK PROPAGATION
 

Test results show that MLP has the similar 

performance to SLP when the usage pattern is regular as 

with the daily repeating data set (Figure 13). For wee

usage patterns, however, its performance generally trails 

SLP although the average is similar (Figure 10 and Figure 

12). The main reason for this result is because MLP needs 

to learn from existing data. When the data does not exhibit 

a significant level of repeating usage patterns, conflicting 

trends may arise and cause learning errors.

There are a number of error correction algorithms 

that can be used with the MLP. These algorithms include 

Back Propagation, Delta rule and Perceptron. Alsmadi et 

al. [1] have examined the Back Propagation, Delta rule 

and Perceptron algorithms and found that Back 

Propagation gave the best result with the MLP as it is 

designed to reduce the error between the actual output and 

the desired output in a gradient descent manner

Beside the error correction, there are other 

parameters that may affect the performance of the MLP. 

The number of hidden layers used and the number of 

hidden neurons in the hidden layers will in some ways 

affect the performance of the neural network and 

accuracy of the results. Much research has been done on 

this area but so far there has been no single solution to all 

problems on deciding the best selection of the parameters. 

Bishop [2] states that an MLP with one hidden layer is 
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ccuracy 

Weekly repeating 

usage pattern 

32.4% 

61% 

61.9% 

 

Prediction Accuracy for weekly repeating 

usage pattern 

MULTI LAYER PERCEPTRON WITH 

BACK PROPAGATION 

Test results show that MLP has the similar 

performance to SLP when the usage pattern is regular as 

with the daily repeating data set (Figure 13). For weekly 

usage patterns, however, its performance generally trails 

SLP although the average is similar (Figure 10 and Figure 

12). The main reason for this result is because MLP needs 

to learn from existing data. When the data does not exhibit 

l of repeating usage patterns, conflicting 

trends may arise and cause learning errors. 
There are a number of error correction algorithms 

that can be used with the MLP. These algorithms include 

Back Propagation, Delta rule and Perceptron. Alsmadi et 

] have examined the Back Propagation, Delta rule 

and Perceptron algorithms and found that Back 

Propagation gave the best result with the MLP as it is 

designed to reduce the error between the actual output and 

the desired output in a gradient descent manner. 

Beside the error correction, there are other 

parameters that may affect the performance of the MLP. 

The number of hidden layers used and the number of 

hidden neurons in the hidden layers will in some ways 

affect the performance of the neural network and the 

accuracy of the results. Much research has been done on 

this area but so far there has been no single solution to all 

problems on deciding the best selection of the parameters. 

Bishop [2] states that an MLP with one hidden layer is 
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sufficient to approximate any mapping to arbitrary 

accuracy as long as there are sufficiently large numbers of 

hidden neurons. However, there is an optimal number of 

hidden neurons to be used for different networks. 

Currently, there is no fixed answer to the optimal number 

of hidden layers and hidden neurons to be used. When 

there are significant processing steps to be operated on the 

inputs before obtaining the outputs, then there may be a 

benefit to having multiple hidden layers. Zurade [20] 

stated that the number of hidden neurons depended on the 

dimension n of the input vector and on the number of 

separable disjoint regions in the n-dimension Euclidean 

input space. He stated that there is a relationship between 

M, n and J (number of hidden neurons) such that

M (J, n) = 

 

It was proved in [19] that the maximum number 

of n nodes is closely related to the N training pairs and 

input dimension in the following formula:

 

, where 

 

 

Table 3: Summary Overview of Prediction Accuracy

 

Prediction accuracy for 

weekly repeating usage 

pattern 

 

 

With different number of hidden neurons, it was 

observed that there is an average of 5% increment in the 

processing time required with each new hidden neuron 

added. This is especially an important consideration as the 

processing power available on the mobile platform is very 

limited. If there is not a big improvement in the 

performance for using large numbers of neurons and 

layers, then it would be better to use the minimum 

required. 

For the daily repeating usage pattern, MLP’s 

performance is similar to the SLP algorithm in that it is 

able to achieve over 90% accuracy due to consistency in 

the input data patterns (Figure 13). This consistency in the 

usage data also enables better training of the nueral 

network. However, the MLP algorithm is observed to 

introduce a considerable amount of lag into the application 

due to this training. 

The error correction for MLP is based on mean

squared error reduction (number of iterations required to 

achieve the acceptable output). To achieve good mean

squared error reduction, the number of iterations must be 

about 10,000. During testing with the 15 widgets, an 

average lag of about 200ms was incurred for every 
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dimension Euclidean 

input space. He stated that there is a relationship between 

(number of hidden neurons) such that 

 

It was proved in [19] that the maximum number 

training pairs and d 

input dimension in the following formula: 

, where C is a constant 

 

The approach is to try an increasing sequence of 

C to obtain different numbers of hidden nodes, train the 

neural network for each n, and observe the 

generates the smallest root mean squared error.  Haykin 

[12] stated that the optimal number of hidden neurons is a 

number that would yield a performance near

Bayesian classifier. His tests showed that a MLP neural 

network using two hidden neurons is already reasonably 

close to the Bayesian performance (for his test problem). 

There are also some rule-of-thumb methods specified in 

[1] for determining the number of hidden neurons.

In our research, we also performed tests to see if 

there is an improvement in the performance with different 

number of hidden neurons. Table 3 shows the result of 

using different numbers of hidden neurons and their 

respective prediction accuracies. It is apparent that there is 

no significant performance improvement observed when 

using more hidden neurons. Each hidden neuron added to 

the hidden layer also introduced more lag into the system 

as more time is required to calculate the 
 

 

 

Table 3: Summary Overview of Prediction Accuracy

 

Two 

hidden 

neurons 

Three 

hidden 

neurons 

Five 

hidden 

neurons 

62% 62.5% 62.2% 

With different number of hidden neurons, it was 

observed that there is an average of 5% increment in the 

processing time required with each new hidden neuron 

added. This is especially an important consideration as the 

le platform is very 

limited. If there is not a big improvement in the 

performance for using large numbers of neurons and 

layers, then it would be better to use the minimum 

For the daily repeating usage pattern, MLP’s 

SLP algorithm in that it is 

able to achieve over 90% accuracy due to consistency in 

the input data patterns (Figure 13). This consistency in the 

usage data also enables better training of the nueral 

network. However, the MLP algorithm is observed to 

duce a considerable amount of lag into the application 

The error correction for MLP is based on mean-

squared error reduction (number of iterations required to 

achieve the acceptable output). To achieve good mean-

n, the number of iterations must be 

about 10,000. During testing with the 15 widgets, an 

average lag of about 200ms was incurred for every 

learning period. This lag may become significant if more 

widgets and contexts are involved since the learning 

duration is proportional to the product of the number of 

widgets and number of contexts. Table 4 summarizes the 

performance analysis and evaluation of the 3 learning 

algorithms.  
 

 

Figure 13: MLP Prediction Accuracy for daily repeating 

usage pattern
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The approach is to try an increasing sequence of 

in different numbers of hidden nodes, train the 

, and observe the n which 

generates the smallest root mean squared error.  Haykin 

[12] stated that the optimal number of hidden neurons is a 

number that would yield a performance near to the 

Bayesian classifier. His tests showed that a MLP neural 

network using two hidden neurons is already reasonably 

close to the Bayesian performance (for his test problem). 

thumb methods specified in 

number of hidden neurons. 

In our research, we also performed tests to see if 

there is an improvement in the performance with different 

number of hidden neurons. Table 3 shows the result of 

using different numbers of hidden neurons and their 

iction accuracies. It is apparent that there is 

no significant performance improvement observed when 

using more hidden neurons. Each hidden neuron added to 

the hidden layer also introduced more lag into the system 

as more time is required to calculate the output. 

Table 3: Summary Overview of Prediction Accuracy 

Ten 

hidden 

neurons 

62.1% 

learning period. This lag may become significant if more 

widgets and contexts are involved since the learning 

n is proportional to the product of the number of 

widgets and number of contexts. Table 4 summarizes the 

performance analysis and evaluation of the 3 learning 

 
 

Figure 13: MLP Prediction Accuracy for daily repeating 

usage pattern 
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Table 4: Summary of Performance Analysis and Ev

Learning 

Algorithm 

Prediction accuracy for 

regular usage pattern

MI 

SLP 

MLP 

 

 

CONCLUSION 
 

In this paper, we have presented the design and 

development of an intelligent interface reconfiguration 

engine that is context-aware. Widget reconfiguration is 

done dynamically without the need for modeling effort. 

Test results show that both the Single Layer Perceptron 

with Error Correction and Multi Layer Perceptron with 

Back Propagation can be used for context

reconfiguration of the mobile phone interface. However, 

the Single Layer Perceptron with Error Correction offers a 

practical yet effective solution for a resource

mobile phone. It offers low computational overheads with 

reasonable prediction accuracy for the typical mobile 

phone user. Although competitive performance is offered 

by the MLP, a period of learning with existing data is 

required. Together with higher computational ov

may not be suitable as an on-the-fly approach. Future 

work would include investigating the effectiveness of 

approaches that include fuzzy logic engines and/or the 

Kohonen neural network as well as deploying the system 

on an actual mobile phone integrated to suitable wireless 

sensor device inputs. 
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