
 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

Intelligent Widget Reconfiguration for Mobile Phones

Peter K.K. Loh, C.T. Lau and B.H. Chan
Nanyang Technological University, Singapore

A significant amount of research work in user interface design exists with a proportion of this extendable

platforms. Some investigate the effect of user ability on interface generation for mobile applications. Other works analyzed

how different contexts and mobile platforms affect the generation of these interfaces. However, most of these exist

works require a significant degree of context requirements modeling before interface reconfiguration takes place. Few on

the-fly reconfiguration approaches exist that learn from user interactions as well as contextual information received by a

mobile phone. With the explosive growth of new applications for the mobile phone, its user interface is quickly becoming

flooded with application widgets. This work investigates some on

user interactions and contextual information received by the mobile phone. Performance evaluations demonstrate how a

simple neural network-based engine is able to improve the prediction accuracy of the interface reconfiguration in a mobile

phone.

Keywords— mobile phone, context-aware, intelligent

1. INTRODUCTION

People are becoming increasingly dependent on

mobile information devices. With increased pervasiveness

of wireless connectivity and technology advancements, the

smart mobile phone is progressively taking on more

important roles to process, collate and delegate

information. A contemporary mobile handset typically

comes with many integrated features, which previously

were available only on desktop PCs or laptops such as

internet access, email, word processing, and video

viewing. An increasing number of mobile phones are also

equipped with additional hardware like sensors to extend

its capabilities e.g. the accelerometer in the Samsung

Blade S5600v [31], the motion recognition sensor in the

Samsung S310 [29], the proximity sensor in the HTC

Touch Pro 2 [25], and the Nokia 5500’s tilt sensor that

supports novel game genres [28]. Together with better

processing power, these mobile phones have become mini

multimedia computers proffering support for an increasing

spectrum of new applications and features.

However, these technological enhancements to a

mobile phone also herald a new set of user problems.

the number of supported widgets increases, widget

management becomes increasingly complex. Locating

relevant or interesting widgets becomes a chore as the user

interface gets cluttered with irrelevant widgets

recent study [22], most new mobile phone owners

indicated that they were adverse to using new services that

were confusing or difficult to access.

mobile phones address these problems partially via screen

organization tools like window managers, widget toolbars

[31] or multiple home screen pages or scenes

of these tools requires proficiency with the mobile phone’s

key controls to be able to correctly and efficiently re

organize the screen’s application widgets. For example, in

the HTC Hero [24], each scene must be pre

the user with appropriate widgets for different contexts

e.g. work, travel, social etc. and are non-adaptive.

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

Intelligent Widget Reconfiguration for Mobile Phones

Peter K.K. Loh, C.T. Lau and B.H. Chan
Nanyang Technological University, Singapore

ABSTRACT

A significant amount of research work in user interface design exists with a proportion of this extendable

platforms. Some investigate the effect of user ability on interface generation for mobile applications. Other works analyzed

how different contexts and mobile platforms affect the generation of these interfaces. However, most of these exist

works require a significant degree of context requirements modeling before interface reconfiguration takes place. Few on

fly reconfiguration approaches exist that learn from user interactions as well as contextual information received by a

hone. With the explosive growth of new applications for the mobile phone, its user interface is quickly becoming

flooded with application widgets. This work investigates some on-the-fly approaches that learn and formulate rules from

ontextual information received by the mobile phone. Performance evaluations demonstrate how a

based engine is able to improve the prediction accuracy of the interface reconfiguration in a mobile

intelligent interface, widget reconfiguration, neural network, rules

People are becoming increasingly dependent on

mobile information devices. With increased pervasiveness

of wireless connectivity and technology advancements, the

t mobile phone is progressively taking on more

important roles to process, collate and delegate

information. A contemporary mobile handset typically

comes with many integrated features, which previously

were available only on desktop PCs or laptops such as

internet access, email, word processing, and video

viewing. An increasing number of mobile phones are also

equipped with additional hardware like sensors to extend

its capabilities e.g. the accelerometer in the Samsung

ition sensor in the

Samsung S310 [29], the proximity sensor in the HTC

Touch Pro 2 [25], and the Nokia 5500’s tilt sensor that

supports novel game genres [28]. Together with better

processing power, these mobile phones have become mini

proffering support for an increasing

spectrum of new applications and features.

However, these technological enhancements to a

mobile phone also herald a new set of user problems. As

the number of supported widgets increases, widget

reasingly complex. Locating

relevant or interesting widgets becomes a chore as the user

interface gets cluttered with irrelevant widgets [17]. In a

study [22], most new mobile phone owners

indicated that they were adverse to using new services that

were confusing or difficult to access. Contemporary

mobile phones address these problems partially via screen

window managers, widget toolbars

scenes [23]. Usage

ncy with the mobile phone’s

key controls to be able to correctly and efficiently re-

organize the screen’s application widgets. For example, in

the HTC Hero [24], each scene must be pre-specified by

the user with appropriate widgets for different contexts

adaptive.

When changes occur over time in a mobile phone

user’s lifestyle and/or roles, new applications may need to

be downloaded, existing applications may be upgraded or

older applications rendered obsolete. In

manual widget re-organization would have to be

performed repeatedly with the above tools. This can be

both tedious and time consuming.

From a mobile phone user’s perspective, some

degree of intelligent widget control should be provided as

one goes about his/her daily activities. For instance, a user

driving to work will more likely use the phone in “hands

free” mode for voice communications instead of SMS or

email. A student who normally uses the phone for

entertainment and social interaction w

during curriculum time. It is also less likely that an

employee would want to invoke a game application or

view a movie at the work place than when travelling via

public transport or resting at home in the evening.

Similarly, a mobile business executive or tourist may

place more emphasis on GPS and location

applications and functionality than an office

employee, albeit using different categories of services. We

ask the following questions:

• Does a user need all or even most

phone’s capability?

• Does a user need the same subset of applications

and functionality all the time?

• Can a mobile phone be made to learn and

recognize a user’s context?

It is quite apparent that different subsets of a

mobile phone’s capabilities appeal to different users

depending on roles/interests. On a regular basis, many

users also make use of specific applications and

functionality in a fairly deterministic pattern depending on

context. A typical mobile phone user’s context may be

defined in terms of usage pattern, date, time of day, and

location as a basis. With the aid of suitable sensor inputs,

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 413

Intelligent Widget Reconfiguration for Mobile Phones

A significant amount of research work in user interface design exists with a proportion of this extendable to mobile phone

platforms. Some investigate the effect of user ability on interface generation for mobile applications. Other works analyzed

how different contexts and mobile platforms affect the generation of these interfaces. However, most of these existing

works require a significant degree of context requirements modeling before interface reconfiguration takes place. Few on-

fly reconfiguration approaches exist that learn from user interactions as well as contextual information received by a

hone. With the explosive growth of new applications for the mobile phone, its user interface is quickly becoming

fly approaches that learn and formulate rules from

ontextual information received by the mobile phone. Performance evaluations demonstrate how a

based engine is able to improve the prediction accuracy of the interface reconfiguration in a mobile

reconfiguration, neural network, rules

When changes occur over time in a mobile phone

user’s lifestyle and/or roles, new applications may need to

be downloaded, existing applications may be upgraded or

older applications rendered obsolete. In such cases,

organization would have to be

performed repeatedly with the above tools. This can be

both tedious and time consuming.

From a mobile phone user’s perspective, some

degree of intelligent widget control should be provided as

goes about his/her daily activities. For instance, a user

driving to work will more likely use the phone in “hands-

free” mode for voice communications instead of SMS or

email. A student who normally uses the phone for

entertainment and social interaction will likely not use it

during curriculum time. It is also less likely that an

employee would want to invoke a game application or

view a movie at the work place than when travelling via

public transport or resting at home in the evening.

business executive or tourist may

place more emphasis on GPS and location-based

applications and functionality than an office-bound

employee, albeit using different categories of services. We

Does a user need all or even most of a mobile

Does a user need the same subset of applications

and functionality all the time?

Can a mobile phone be made to learn and

recognize a user’s context?

It is quite apparent that different subsets of a

es appeal to different users

depending on roles/interests. On a regular basis, many

users also make use of specific applications and

functionality in a fairly deterministic pattern depending on

context. A typical mobile phone user’s context may be

in terms of usage pattern, date, time of day, and

location as a basis. With the aid of suitable sensor inputs,

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

additional contextual information may be gleaned e.g. how

far has the user moved from the previous location, how

fast is the user moving now, heart rate (stress level) etc.

However, at the time of this paper, there is no reported

work that offers a learning engine with dynamic context

aware reconfiguration of a mobile phone interface. As a

consequence, mobile phone users would have to

constantly navigate through and manually reconfigure a

complex and confusing set of excess widgets that they

either do not need or no longer use.

2. MOTIVATION AND CHALLENGES

As mobile phones become a necessity to the daily

lives of most people, there is a need to find

solution to the issues highlighted previously. As the

population is also graying in several countries, there may

be more users who will encounter difficulties with the

interfaces of contemporary mobile phones [15].

Currently, there is no reported mobile phone

engine that is able to learn and automatically reconfigure

the interface widgets based on a user’s context. As an

example, a user’s context could be defined by time,

location, traffic condition, phone usage pattern and even

personal biometrics like heart/perspiration rate etc.

Currently, widgets will reside on the mobile phone

interface even if the user has not used the applications for

an extended period of time. These widgets will remain

until the user specifically removes the application

Similarly, when new applications are installed, the user

can either manually organize the corresponding widgets or

just allow the widget “clutter” to get worse. Reasons for

the lack of such capability could include anticipated high

processing overheads, development constraints and

potential increased access complexity introduced by such

engines [18].

With an efficient context-aware reconfiguration

engine, however, users need not expend considerable

effort to navigate and locate a particular application as

system will automatically select, retrieve and display the

icons most likely to be used for that user. An intelligent

reconfiguration engine will also learn from the perceived

context and suitably adapt the interface for the user [18]

doing away with frequent manual reconfiguration.

Challenges facing the development of such an engine

would then include:

• Need for a simple and efficient design that would

not introduce unnecessary overheads or more

complexity to the user interface.

• The engine must be transparent to the user while

working in tandem with the operating system of

the mobile phone

• The engine must learn and automatically adapt

the interface according to the specified context

This paper proposes an intelligent, context

interface reconfiguration engine prototype for the mobile

phone called SmartIFace and is organized as follows.

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

additional contextual information may be gleaned e.g. how

far has the user moved from the previous location, how

rt rate (stress level) etc.

However, at the time of this paper, there is no reported

work that offers a learning engine with dynamic context-

aware reconfiguration of a mobile phone interface. As a

consequence, mobile phone users would have to

vigate through and manually reconfigure a

complex and confusing set of excess widgets that they

AND CHALLENGES

As mobile phones become a necessity to the daily

lives of most people, there is a need to find an effective

solution to the issues highlighted previously. As the

population is also graying in several countries, there may

be more users who will encounter difficulties with the

interfaces of contemporary mobile phones [15].

ted mobile phone

engine that is able to learn and automatically reconfigure

the interface widgets based on a user’s context. As an

example, a user’s context could be defined by time,

location, traffic condition, phone usage pattern and even

rics like heart/perspiration rate etc.

Currently, widgets will reside on the mobile phone

interface even if the user has not used the applications for

an extended period of time. These widgets will remain

until the user specifically removes the application.

Similarly, when new applications are installed, the user

can either manually organize the corresponding widgets or

just allow the widget “clutter” to get worse. Reasons for

the lack of such capability could include anticipated high

development constraints and

potential increased access complexity introduced by such

aware reconfiguration

engine, however, users need not expend considerable

effort to navigate and locate a particular application as the

system will automatically select, retrieve and display the

icons most likely to be used for that user. An intelligent

reconfiguration engine will also learn from the perceived

context and suitably adapt the interface for the user [18]

frequent manual reconfiguration.

Challenges facing the development of such an engine

Need for a simple and efficient design that would

not introduce unnecessary overheads or more

complexity to the user interface.

sparent to the user while

working in tandem with the operating system of

The engine must learn and automatically adapt

the interface according to the specified context

This paper proposes an intelligent, context-aware

ration engine prototype for the mobile

and is organized as follows.

Section 1 provides the background of the existing situation

and associated problems while Section 2 presents the

motivation and challenges behind the research. Sect

presents a review of related research. Design details of the

system architecture and learning engine are in Sections 4

and 5. Section 6 presents the system test results as well as

a performance analysis and evaluation. The paper

concludes with Section 7 followed by the references.

3. REVIEW OF EXISTING R

The following systems, Supple, Gaze

Dynamo-AID, Situations and MIMIC, make use of

contextual information that is typically user

generate user interfaces. Some of these interfaces

exported to mobile phone platforms via additional

mechanisms.

SUPPLE

Supple [11] automatically generates user

interfaces according to the user’s physical ability, device

and usage. Supple is able to create personalized interfaces

better suited to the contexts of individual users. Users with

physical limitations and impairments form a particular

group targeted by Supple. A subsystem called Ability

Modeler performs a one-time assessment of a person’s

motor ability and builds a model of those abilitie

result is used during interface generation. These

automatically generated interfaces greatly improve the

speed, accuracy and satisfaction of users with motor

impairments.

A subsystem called Arnauld is also used to obtain

user responses to generate a

approximates the desired behavior. An optimization

algorithm determines the user interface that satisfies the

platform device’s constraints while minimizing the cost

function. By supplying different device constraints and

cost functions, different styles of user interfaces may be

produced. However, Supple’s functionality is currently

restricted to window-based interfaces found on desktop

platforms. Although Supple is written in Java, it is

currently unable to run on a mobile phon

libraries from Java SE.

GAZE-X

Gaze-X [16] is an agent

that supports multimodal human

The system comprises 2 main parts

and context sensing. It models user’s actions and emotio

and then adapts the interface to support the user in his

activities. The context information, known as W5+ (who,

where, what, when, why, how), is obtained through a

number of human communication modalities, such as

speech, eye gaze direction, face and f

a number of standard interface modalities like mouse

moves, keystrokes and active software identification.

Various commercially available solutions such as voice

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 414

Section 1 provides the background of the existing situation

and associated problems while Section 2 presents the

motivation and challenges behind the research. Section 3

presents a review of related research. Design details of the

system architecture and learning engine are in Sections 4

and 5. Section 6 presents the system test results as well as

a performance analysis and evaluation. The paper

n 7 followed by the references.

REVIEW OF EXISTING RESEARCH

The following systems, Supple, Gaze-X,

AID, Situations and MIMIC, make use of

contextual information that is typically user-specified, to

generate user interfaces. Some of these interfaces can be

exported to mobile phone platforms via additional

Supple [11] automatically generates user

interfaces according to the user’s physical ability, device

and usage. Supple is able to create personalized interfaces

the contexts of individual users. Users with

physical limitations and impairments form a particular

group targeted by Supple. A subsystem called Ability

time assessment of a person’s

motor ability and builds a model of those abilities. The

result is used during interface generation. These

automatically generated interfaces greatly improve the

speed, accuracy and satisfaction of users with motor

A subsystem called Arnauld is also used to obtain

user responses to generate a cost function that closely

approximates the desired behavior. An optimization

algorithm determines the user interface that satisfies the

platform device’s constraints while minimizing the cost

function. By supplying different device constraints and

unctions, different styles of user interfaces may be

produced. However, Supple’s functionality is currently

based interfaces found on desktop

platforms. Although Supple is written in Java, it is

currently unable to run on a mobile phone as it uses

X [16] is an agent-based intelligent system

that supports multimodal human-computer interaction.

The system comprises 2 main parts – context modeling

and context sensing. It models user’s actions and emotions

and then adapts the interface to support the user in his

activities. The context information, known as W5+ (who,

where, what, when, why, how), is obtained through a

number of human communication modalities, such as

speech, eye gaze direction, face and facial expression, and

a number of standard interface modalities like mouse

moves, keystrokes and active software identification.

Various commercially available solutions such as voice

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

recognition software, image processing software are

required for the multimodal inputs.

The inference engine used is based on case

reasoning, a type of lazy learning method [3]. Lazy

learning methods store the current input data and postpone

the generalization of data until an explicit request is made.

The case-base used is a dynamic, incrementally self

organizing, event-content-addressable memory that allows

facts retrieval and events evaluation based on user

preferences and generalizations formed from prior inputs.

Based on the evaluation, Gaze-X will execute the most

appropriate user-supportive action. The case

reasoning can also unlearn actions according to user

instructions and thereby increasing its expertise in user

profiled, user-supportive, intelligent interaction.

Gaze-X runs in either unsupervised or supe

modes. In the unsupervised mode, the user’s affective state

is used to decide on his satisfaction with the executed

action and adaptive, user-supportive actions are executed

one at a time. In the supervised mode, the user explicitly

confirms that a preferred action has been executed and

may provide feedback to the system. Gaze

setup initially in the supervised mode to build up the

profile of the user using the system. Once the system has

captured enough cases of the user, the system would

be able to operate correctly in the unsupervised mode.

Gaze-X currently runs only on desk-top platforms based

on Linux, Windows, or Mac Os X.

DYNAMO-AID

Dynamo-AID (Dynamic Model

Interface Development) [4-5] is a design process that

includes a proposed runtime architecture to develop user

interfaces for context-aware systems. However, the

designer must first construct the declarative models which

specify the interactions. Next, the models are serialized to

an XML-based high-level user interface description

language to be exported to the runtime architecture. After

serialization, the designer can render a prototype to adjust

any undesirable aspects of the interface. Lastly, the final

user interface can be deployed on the target platform.

An XML-based meta-language, DynaMOL, is

used for the exportation and transportation of models to

the runtime architecture. A preliminary implementation of

the runtime architecture has been tested on top of the

Dygimes framework (Dynamically Generating Interf

for Mobile Computing Devices and Embedded System)

[6]. The architecture consists of a dialog controller which

takes care of the changes to user interface. These changes

can be caused by user interaction or context changes.

SITUATIONS

Situations[7] is an extension to the context

infrastructure called the Context toolkit [8]. It supports

easier building of context-aware applications by

facilitating access to application states and behavior. It

exposes an API to the internal logic of a context

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

recognition software, image processing software are

The inference engine used is based on case-base

reasoning, a type of lazy learning method [3]. Lazy

learning methods store the current input data and postpone

the generalization of data until an explicit request is made.

is a dynamic, incrementally self-

addressable memory that allows

facts retrieval and events evaluation based on user

preferences and generalizations formed from prior inputs.

X will execute the most

supportive action. The case-based

reasoning can also unlearn actions according to user

instructions and thereby increasing its expertise in user-

supportive, intelligent interaction.

X runs in either unsupervised or supervised

modes. In the unsupervised mode, the user’s affective state

is used to decide on his satisfaction with the executed

supportive actions are executed

one at a time. In the supervised mode, the user explicitly

preferred action has been executed and

may provide feedback to the system. Gaze-X has to be

setup initially in the supervised mode to build up the

profile of the user using the system. Once the system has

captured enough cases of the user, the system would then

be able to operate correctly in the unsupervised mode.

top platforms based

AID (Dynamic Model-Based User

5] is a design process that

des a proposed runtime architecture to develop user

aware systems. However, the

designer must first construct the declarative models which

specify the interactions. Next, the models are serialized to

rface description

language to be exported to the runtime architecture. After

serialization, the designer can render a prototype to adjust

any undesirable aspects of the interface. Lastly, the final

user interface can be deployed on the target platform.

language, DynaMOL, is

used for the exportation and transportation of models to

the runtime architecture. A preliminary implementation of

the runtime architecture has been tested on top of the

Dygimes framework (Dynamically Generating Interfaces

for Mobile Computing Devices and Embedded System)

[6]. The architecture consists of a dialog controller which

takes care of the changes to user interface. These changes

can be caused by user interaction or context changes.

an extension to the context-aware

infrastructure called the Context toolkit [8]. It supports

aware applications by

facilitating access to application states and behavior. It

exposes an API to the internal logic of a context-aware

application. Context information from sensors or users is

made available to the application and application logic is

used to acquire and analyze inputs, issue or execute

context outputs when appropriate. The application logic

consists of creating a “situation” with an information

description that it is interested in and the actions

associated with the “situation”. It would consist of a

number of context rules and the situation will handle the

remaining logic discovery, individual sources of context

and data and determining when input is relevant and

executing the appropriate services.

Context input is handled by widgets and context

output by services. The capture of context input is made

easier by the fully declarative mechanism provided by

Situations’ references. Situations’ listeners provide all the

necessary functionalities to obtain real

default listener called Tracer provides indications of the

current status of variables, origins of the variables, and

current state of the context rul

applications would need to implement customized

methods to access application logic. Situations provide

standard access and allow arbitrary applications to provide

intelligibility and control interaction for context

applications and interfaces can be built independent of the

main application.

MIMIC

Eisenstein et al. [10] proposed a set of model

based techniques that may aid designers to build UIs

across several platforms, while respecting the unique

constraints posed by each platform. The approach will

isolate the features that are common to the various

contexts of use and specify how the user interface should

adjust when the context changes.

Knowledge bases are created that describe

various components of the user interfa

presentation, the platform, the task structure, and the

context. The knowledge base can then be used to

automatically produce user interfaces matching the

requirements of each context of use. The user interface is

defined as a implementation-

MIMIC modeling language. MIMIC is a formal

declarative modeling language that comprises of 3

components – platform model, presentation model, and

task model.

The platform model describes the computer

systems running the user interface and the platform’s

constraint information. The platform model can then be

used to generate a set of user interfaces for each platform.

It can also be dynamic and changes accordingly to context

changes. The presentation model describes the visual

appearance of the user interface. It describes the hierarchy

of windows and their widgets, stylistic choices and the

selection and placement of these widgets. The task model

represents the structure of the tasks that the user may be

performing. It is hierarchically decomposed into subtasks

and information regarding goals, preconditions and post

conditions may be supplied.

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 415

application. Context information from sensors or users is

made available to the application and application logic is

used to acquire and analyze inputs, issue or execute

context outputs when appropriate. The application logic

ation” with an information

description that it is interested in and the actions

associated with the “situation”. It would consist of a

number of context rules and the situation will handle the

remaining logic discovery, individual sources of context

ta and determining when input is relevant and

executing the appropriate services.

Context input is handled by widgets and context

output by services. The capture of context input is made

easier by the fully declarative mechanism provided by

erences. Situations’ listeners provide all the

necessary functionalities to obtain real-time execution. A

default listener called Tracer provides indications of the

current status of variables, origins of the variables, and

current state of the context rule. Traditional context-aware

applications would need to implement customized

methods to access application logic. Situations provide

standard access and allow arbitrary applications to provide

intelligibility and control interaction for context-aware

cations and interfaces can be built independent of the

Eisenstein et al. [10] proposed a set of model-

based techniques that may aid designers to build UIs

across several platforms, while respecting the unique

ach platform. The approach will

isolate the features that are common to the various

contexts of use and specify how the user interface should

adjust when the context changes.

Knowledge bases are created that describe

various components of the user interface, including the

presentation, the platform, the task structure, and the

context. The knowledge base can then be used to

automatically produce user interfaces matching the

requirements of each context of use. The user interface is

-neutral description by the

MIMIC modeling language. MIMIC is a formal

declarative modeling language that comprises of 3

platform model, presentation model, and

The platform model describes the computer

interface and the platform’s

constraint information. The platform model can then be

used to generate a set of user interfaces for each platform.

It can also be dynamic and changes accordingly to context

changes. The presentation model describes the visual

appearance of the user interface. It describes the hierarchy

of windows and their widgets, stylistic choices and the

selection and placement of these widgets. The task model

represents the structure of the tasks that the user may be

rchically decomposed into subtasks

and information regarding goals, preconditions and post

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

The connections, especially those between the

platform and presentation models, are critical to the

determination of the interface’s interactive behavior.

These connections also describe how the various platform

constraints will influence the visual appearance of the user

interface. Several techniques were described for the

creation of connections between the various models and

the interpretations of these. However, the automated

generation of task-optimized presentation structures using

MIMIC has not been developed yet.

4. REVIEW SUMMARY

Table 1 summarizes the characteristics of the

systems reviewed. From the reviews, it can be seen that

the common design approach is based on capturing or

Table 1: Comparison Summary of Surveyed Context

System
Development

Language

Supple Java

Gaze-X

Dynamo-AID Java, .Net

Situations Java, .Net, Flash

MIMIC

SmartIFace JME

5. SYSTEM DESIGN

The design of the system architecture and

learning process are detailed in this section. We first

present the problem formulation.

PROBLEM FORMULATION

We define the following for a mobile phone such that

NDT WWW ∪= :

TW : set of all widgets for the mobile phone

DW : set of all widgets displayed on the interface

NW : set of all widgets not displayed on the interface

Let C(u) represent the context tuple for user

P(w,C(u)) be the probability of selecting widget

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

The connections, especially those between the

platform and presentation models, are critical to the

eractive behavior.

These connections also describe how the various platform

constraints will influence the visual appearance of the user

interface. Several techniques were described for the

creation of connections between the various models and

etations of these. However, the automated

optimized presentation structures using

Table 1 summarizes the characteristics of the

systems reviewed. From the reviews, it can be seen that

common design approach is based on capturing or

abstracting contextual information via models or

“situations” and then translating these to a required

platform. Two main techniques were used predominantly

for context modeling – model

certain amount of expertise may be found in some of these

approaches via the production, storage and maintenance of

case-bases, context rules. But these approaches focus

mainly on the use of context information for interface

generation. None of the syste

learning capability. Only Gaze

which enables the user to manually change context

actions. In this paper, rule-based technique is chosen for

the specification of contextual information while dynamic

learning capability is implemented with neural network

techniques.

Comparison Summary of Surveyed Context-Aware Systems

Development

Language
Platforms

Context

Modelling
Learning capability

Java Desktop Model-based

 Desktop Context- based Feedback system

Java, .Net
Desktop,

Mobile
Model-based

Java, .Net, Flash Desktop Rule-based

Runtime change to

context rules and

Desktop,

Mobile
Model-based

JME
Desktop,

Mobile

Dynamic

Context-based

The design of the system architecture and

learning process are detailed in this section. We first

We define the following for a mobile phone such that:

: set of all widgets for the mobile phone

: set of all widgets displayed on the interface

: set of all widgets not displayed on the interface

le for user u and

be the probability of selecting widget w based

on the context C(u). In our

define:

C(u) = [time, location

widget_use[day]]

Then, if k widgets are to be displayed such that

},...,,{ 21 kD wwwW = , we require

,())(,(CwPuCwP ji >

Nj Ww ∈ .

6. SYSTEM ARCHITECTURE

The system architecture shown in Figure 1

comprises of the following modules

Learning Engine, RMS (Record Management System) and

Rule-Base Engine. The mobile phone user interacts with

the screen and that is usually captured by the phone OS.

The proposed system can be viewed to be interposed

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 416

abstracting contextual information via models or

“situations” and then translating these to a required

platform. Two main techniques were used predominantly

model-based and rule-based. A

certain amount of expertise may be found in some of these

approaches via the production, storage and maintenance of

bases, context rules. But these approaches focus

mainly on the use of context information for interface

generation. None of the systems incorporates dynamic

learning capability. Only Gaze-X has a feedback module

which enables the user to manually change context

based technique is chosen for

the specification of contextual information while dynamic

apability is implemented with neural network

Aware Systems

Learning capability

Feedback system

Runtime change to

context rules and

variables

Neural net

. In our SmartIFace prototype, we

location, traffic, heart rate,

widgets are to be displayed such that

, we require

))(uC for all 1 ≤ i ≤ k and

SYSTEM ARCHITECTURE

The system architecture shown in Figure 1

comprises of the following modules – GUI Manager,

(Record Management System) and

The mobile phone user interacts with

the screen and that is usually captured by the phone OS.

The proposed system can be viewed to be interposed

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

between the screen and the phone OS.

simulates the supply of sensor- and location

information to the system. A timer module (

Simulated external inputs include GPS location

information, time of day, traffic conditions and heart

condition. The GUI manager records user interaction when

application widgets are accessed. Together, these form the

contextual information that is passed to the learning

Start

S
C
R
E
E
N

User

Interaction

GUI

Manager

External

Inputs

Location

heart condition

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

between the screen and the phone OS. External Inputs

and location-based

information to the system. A timer module (not shown)

simulates the transition of time for performance analysis

and evaluation.

Figure 1: System Architecture

Simulated external inputs include GPS location

information, time of day, traffic conditions and heart

records user interaction when

application widgets are accessed. Together, these form the

contextual information that is passed to the learning

engine. Interface re-configuration is based on commands

from the learning engine referencing rules in the rule

engine. The RMS handles rule storage in the mobile

phone.

Stop

Re-arrange usage

pattern for

learning process

Processed all

widgets?

Retrieve rule

for widget

Set counters

for statistics

Process

current data

using

specified

algorithm

No
Pass

parameter to

rule base to

fire the rule

Yes

Return the

action of the

fired rule to

the calling

program

Figure 2: Learning Process Flow

Manager

External

Inputs

Learning

Engine

Rule

Base

Engine

RMSLocation, time,

heart condition

Contextual

information

Reconfig.

Command

Rules

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 417

simulates the transition of time for performance analysis

configuration is based on commands

from the learning engine referencing rules in the rule-base

engine. The RMS handles rule storage in the mobile

parameter to

action of the

Rule-

Base

Engine

RMS

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

7. LEARNING PROCESS

The learning engine will add widgets, remove

widgets or maintain current screen state based on the

results of its learning algorithm. The learning engine

communicates with the rule-base engine for rules update

Start

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

The learning engine will add widgets, remove

widgets or maintain current screen state based on the

ts learning algorithm. The learning engine

base engine for rules update

and reference. The rule-base engine accepts parameters

from the learning engine, fires the appropriate rules and

returns the resultant action from the fired

learning process flow is illustrated in Figure 2.

Stop

Load pre-

define context

information

Manual

Mode?

Load

simulated

user activity

After 7 days?

No

Process

context rules

Yes

Widget

changes?
Update tickerNo

Re-draw

main menu

Yes

Process pattern in

learning engine

for each context

Yes

Update all

context

rules

Retrieve

usage

pattern

Update ne

rules

Figure 3: Simulation Process Flow

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 418

base engine accepts parameters

from the learning engine, fires the appropriate rules and

returns the resultant action from the fired rule. The

learning process flow is illustrated in Figure 2.

No

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

The learning engine is an integral part of the

simulation process. The simulation process flow is

illustrated in Figure 3. Besides simulating time

progression, it will continuously capture users’ widget

interactions and pass this information to the learning

engine for processing. Changes to the context will cause

context rules to be updated as shown in the rule

engine. The learning engine learns during an initial period

of k days. In our simulation, we set k to 7 for a learning

period of 1 week. After this initial period, the

engine continuously communicates with the learning

engine at a preset timing. As this may caus

in the mobile device’s operation, the preset timing was set

to midnight when, it is assumed, that user interaction

activity would be at its minimum. The timing can,

however, be set to any appropriate user-specified timing.

After the learning engine has c

processing and returned the results, a decision will be

made on whether to re-configure the screen widgets or

maintain current display status. The action taken by the

learning engine is determined by the type of learning

algorithm implemented (explained in the next section).

After the learning engine has performed its action, all

widgets for the specified context will be processed for

display state changes before the rule

appropriate rule and returns the action associated with the

rule. The rule-base includes helper methods to support rule

storage management.

8. LEARNING ENGINE DESIGN

The objective of the learning engine is to

determine trends from the usage pattern data in the current

context. Three different learning algorithms were

Figure 4:

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

The learning engine is an integral part of the

simulation process. The simulation process flow is

s simulating time

progression, it will continuously capture users’ widget

interactions and pass this information to the learning

engine for processing. Changes to the context will cause

context rules to be updated as shown in the rule-base

ning engine learns during an initial period

to 7 for a learning

period of 1 week. After this initial period, the rule-base

continuously communicates with the learning

engine at a preset timing. As this may cause some latency

in the mobile device’s operation, the preset timing was set

to midnight when, it is assumed, that user interaction

activity would be at its minimum. The timing can,

specified timing.

ng engine has completed pattern

returned the results, a decision will be

configure the screen widgets or

maintain current display status. The action taken by the

learning engine is determined by the type of learning

orithm implemented (explained in the next section).

After the learning engine has performed its action, all

widgets for the specified context will be processed for

display state changes before the rule-base fires the

associated with the

base includes helper methods to support rule

LEARNING ENGINE DESIGN

The objective of the learning engine is to

determine trends from the usage pattern data in the current

rning algorithms were

developed for the learning engine: Minimal Intelligence

(MI), Single Layer Perceptron with Error Correction

(SLP) and Multi Layer Perceptron with Back Propagation

(MLP).

Witmate [30] and Joone [27] make use of several

libraries not supported by Java ME, such as the Math class

(no support for logarithmic, exponential, power etc), file

input/output (text file not supported for Java ME), and

event handling. As Witmate is a commercial program, no

source code is available. Joone, on the ot

source and may be used for the creation of neural

networks. Joone codes, however, cannot be pre

the Java ME platform. Therefore, to ensure complete

compliance with the pre-verification process, customized

code was developed.

9. MINIMAL INTELLIGENCE

To reduce processing overheads, the MI

algorithm uses only the most recent user activity for all

widgets in the phone to decide whether to update rules as

shown in Figure 4. Each widget has an indicator in the rule

and the widget will be displayed for the context if the

indicator is 1. The algorithm first checks if the current user

activity for each widget is present or absent (1 or 0). If

user activity is present and the rule indicator is 0 (user

accessed the widget but widget is not d

include the widget in the rule. However, if user activity is

absent and the rule indicator is 1 (user did not access the

widget but widget is displayed), the widget is removed

from the rule. MI does not track user activity pattern over

time, only using the most recent user activity data on all

widgets to set the rules.

Figure 4: Minimal Intelligence Algorithm Process Flow

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 419

developed for the learning engine: Minimal Intelligence

(MI), Single Layer Perceptron with Error Correction

(SLP) and Multi Layer Perceptron with Back Propagation

Witmate [30] and Joone [27] make use of several

upported by Java ME, such as the Math class

(no support for logarithmic, exponential, power etc), file

input/output (text file not supported for Java ME), and

event handling. As Witmate is a commercial program, no

source code is available. Joone, on the other hand, is open

source and may be used for the creation of neural

networks. Joone codes, however, cannot be pre-verified by

the Java ME platform. Therefore, to ensure complete

verification process, customized

MINIMAL INTELLIGENCE

To reduce processing overheads, the MI

algorithm uses only the most recent user activity for all

widgets in the phone to decide whether to update rules as

Each widget has an indicator in the rule

be displayed for the context if the

indicator is 1. The algorithm first checks if the current user

activity for each widget is present or absent (1 or 0). If

user activity is present and the rule indicator is 0 (user

accessed the widget but widget is not displayed), it will

include the widget in the rule. However, if user activity is

absent and the rule indicator is 1 (user did not access the

widget but widget is displayed), the widget is removed

from the rule. MI does not track user activity pattern over

ime, only using the most recent user activity data on all

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

10. SINGLE LAYER PERCEPTRON WITH
ERROR CORRECTION

The second algorithm is a modified Singl

Perceptron (SLP) with error correction. The SLP neural

network is a simple feed forward neural network that

consists of a single processing unit (cell). Each input to the

cell is associated with a weight that can be positive or

negative to indicate reinforcement or inhibition on the cell.

The sigmoid function of the cell sums the products of the

weighted inputs and adds a bias. The bias adjustment

(error correction) is based on the previous prediction. The

SLP process flow is shown in Figure 5.

Add widget

to rule

Remove

widget from

rule

Yes

Yes

No

Figure 5: Single Layer Perceptron with Error Correction

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

SINGLE LAYER PERCEPTRON WITH

The second algorithm is a modified Single Layer

Perceptron (SLP) with error correction. The SLP neural

network is a simple feed forward neural network that

consists of a single processing unit (cell). Each input to the

cell is associated with a weight that can be positive or

reinforcement or inhibition on the cell.

The sigmoid function of the cell sums the products of the

weighted inputs and adds a bias. The bias adjustment

(error correction) is based on the previous prediction. The

11. MULTI LAYER PERCEPTRON WITH
BACK PROPAGATION

The MLP consists of multiple layers of cells and

permit more complex, non-linear relationships of input

data to output results. There is an input layer, a hidden

layer and an output layer. The input layer represen

weighted inputs to the hidden layer. The hidden layer

results are computed and used as weighted inputs to the

output layer. The output layer uses these weighted inputs

to compute the final output. With Back Propagation, the

output error is corrected by back propagating this error

through the network and adjusting weights in each layer.

Convergence can take some time depending on the

allowable error in the output.

Start

Stop

Check user

activity

pattern

Is error

correction

required?

Summation

of products

of weights

and data

Sigmoid

function

Result >= upper

threshold ?

Result <= lower

threshold ?

No

Maintain

current state

No

Rule changed

required?

Rule changed

required?

Yes

Yes

Yes

Yes

No

No

Yes

Single Layer Perceptron with Error Correction Process Flow

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 420

LTI LAYER PERCEPTRON WITH

BACK PROPAGATION

The MLP consists of multiple layers of cells and

linear relationships of input

data to output results. There is an input layer, a hidden

layer and an output layer. The input layer represents the

weighted inputs to the hidden layer. The hidden layer

results are computed and used as weighted inputs to the

output layer. The output layer uses these weighted inputs

to compute the final output. With Back Propagation, the

by back propagating this error

through the network and adjusting weights in each layer.

Convergence can take some time depending on the

Adjust

weights for

error

Process Flow

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

The steps for the back propagation are (for

learning data E and expected output C):

1. Compute the forward propagation of E through

the network (compute the weighted sums of the

network, S, and the inputs, u, of every cell).

2. From the output, make a backward pass through

the intermediate layers, computing the error

values.

a. For output cells o : erroro = (Co -

b. For all hidden cells i: errori = (∑w

– ui)

 m – all cells connected to hidden cell

w – given weight, u –

3. Lastly, update the weights within the network as

follows :

Start

Add widget

widget from

Update

weights
No

Figure 6: Multi

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

The steps for the back propagation are (for

Compute the forward propagation of E through

the network (compute the weighted sums of the

network, S, and the inputs, u, of every cell).

ake a backward pass through

the intermediate layers, computing the error

- uo)uo(1 - uo)

∑wm,i erroro)ui (1

all cells connected to hidden cell

 cell input

Lastly, update the weights within the network as

a. For weights connecting hidden to output layers:

w = w + ρ * erroro * u

b. For weights connecting hidden to input layers: w

= w + ρ * error * ui

The forward pass through the network computes

the cell inputs and an output. The backward pass computes

the gradient and the weights are then updated so that the

error is minimized. The learning rate, ρ,

amount of change that may take place for the weights.

Although it may take longer for a smaller learning rate to

converge, it can minimize the chance of overshooting the

target. If the learning rate is set too high, the network may

not converge at all. The process flow of MLP is shown in

Figure 6.

Stop

Prepare data

for training

calculate the

output of the

network

Result >= upper

threshold ?

Result <= lower

threshold ?

No

Maintain

current state

No

Rule changed

required?

Rule changed

required?

Add widget

to rule

Remove

widget from

rule

Yes

Yes

Yes

Yes

No

No

Calculate

values for all

cells in

network

Calculate

error for

current

iteration

Send current

data to

network

Iteration >

10,000?

Calculate

values for all

cells in

network

Yes

Multi Layer Perceptron with Back Propagation Process Flow

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 421

For weights connecting hidden to output layers:

* uo

ing hidden to input layers: w

The forward pass through the network computes

the cell inputs and an output. The backward pass computes

the gradient and the weights are then updated so that the

error is minimized. The learning rate, ρ, minimizes the

amount of change that may take place for the weights.

Although it may take longer for a smaller learning rate to

converge, it can minimize the chance of overshooting the

target. If the learning rate is set too high, the network may

ge at all. The process flow of MLP is shown in

upper

lower

tion Process Flow

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

(a) SLP Weekly (Car) (b) SLP

(a) SLP Daily (Car) (b) SLP

Figure 7: Screen Shots of SLP, MI and MLP in action

PERFORMANCE TESTING

Testing focuses on the prediction a

usage pattern by the MI, SLP and MLP learning

algorithms. Usage pattern comprises widget interaction

activity, user location, time, traffic conditions and heart

condition. Table 2 summarizes the overall performance.

DETERMINATION OF SUITABLE

THRESHOLDS

SLP and MLP algorithms require setting

appropriate thresholds to determine the output of the

neural network. Selecting an appropriate threshold

improves prediction accuracy of user activity. However,

this is complicated as the output of the sigmoi

function used is non-linear. Hence, the upper and lower

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

b) SLP Weekly (Office) (c) MI Weekly (Office) (d) MLP

(b) SLP Daily (Office) (c) MI Daily (Office) (d) MLP

Figure 7: Screen Shots of SLP, MI and MLP in action

Testing focuses on the prediction accuracy of

usage pattern by the MI, SLP and MLP learning

algorithms. Usage pattern comprises widget interaction

activity, user location, time, traffic conditions and heart

condition. Table 2 summarizes the overall performance.

DETERMINATION OF SUITABLE

SLP and MLP algorithms require setting

appropriate thresholds to determine the output of the

neural network. Selecting an appropriate threshold

improves prediction accuracy of user activity. However,

this is complicated as the output of the sigmoid activation

linear. Hence, the upper and lower

thresholds were designed to be adaptive according to

usage data patterns specified for learning.

SELECTION OF TEST SCENARIOS

Since a mobile phone platform is not suitable for

file operations, the test environment could not be based on

file inputs. Manual data entry was not practical as there

was more than 20 days of user activity data. A special

function, loadActivity(), was implemented for the loading

of test environments onto the mobil

categories of test scenarios were created for each learning

algorithm – weekly repeating user activity pattern and

daily repeating user activity pattern. This enables

algorithmic performance under a range of conditions to be

analyzed and evaluated. A parameter decides the category

of testing scenario to be used and loaded into a vector. At

the end of each day, the next day’s data is loaded. Figure 7

shows some screen shots in different contexts.

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 422

(d) MLP Weekly (Car)

(d) MLP Daily (Car)

thresholds were designed to be adaptive according to

usage data patterns specified for learning.

SELECTION OF TEST SCENARIOS

Since a mobile phone platform is not suitable for

ions, the test environment could not be based on

file inputs. Manual data entry was not practical as there

was more than 20 days of user activity data. A special

, was implemented for the loading

of test environments onto the mobile phone. Two main

categories of test scenarios were created for each learning

weekly repeating user activity pattern and

daily repeating user activity pattern. This enables

algorithmic performance under a range of conditions to be

evaluated. A parameter decides the category

of testing scenario to be used and loaded into a vector. At

the end of each day, the next day’s data is loaded. Figure 7

shows some screen shots in different contexts.

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

Table 2: Summary Overview of Prediction A

Minimal Intelligence (MI)

Single Layer Perceptron with Error

Correction (SLP)

Multi Layer Perceptron with

BackPropagation (MLP)

MINIMAL INTELLIGENCE ALGORITHM

Test results show that MI is unable to accurately

predict user activities. Prediction is based on the previous

day data and the percentage of correct predictions is the

lowest among all three algorithms. For the weekly

repeating usage patterns (Figure 8), there are not many

repeated activity patterns for a given context. This causes

the MI algorithm to have low accuracy that tapers off at

around 30% after 3 weeks. It is still able to achieve 30%

because at any time, four different contexts are used

the learning process and this enables the algorithm to at

least distinguish and identify to a certain extent, the

context used. For the daily repeating usage pattern, the MI

algorithm is able to achieve higher accuracy than the

previous two usage patterns as there are more repeated

activities (Figure 9).

Figure 10: SLP Prediction Accuracy for weekly

repeating usage pattern

Figure 11: SLP Prediction Accuracy for daily repeating

usage pattern

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

Table 2: Summary Overview of Prediction Accuracy

Daily repeating usage

pattern

Weekly repeating

usage pattern

Minimal Intelligence (MI) 57.6% 32.4%

Single Layer Perceptron with Error

Correction (SLP)
97% 61%

Multi Layer Perceptron with

BackPropagation (MLP)
97% 61.9%

LGORITHM

Test results show that MI is unable to accurately

predict user activities. Prediction is based on the previous

day data and the percentage of correct predictions is the

lowest among all three algorithms. For the weekly

gure 8), there are not many

repeated activity patterns for a given context. This causes

the MI algorithm to have low accuracy that tapers off at

around 30% after 3 weeks. It is still able to achieve 30%

because at any time, four different contexts are used for

the learning process and this enables the algorithm to at

least distinguish and identify to a certain extent, the

For the daily repeating usage pattern, the MI

algorithm is able to achieve higher accuracy than the

erns as there are more repeated

Figure 10: SLP Prediction Accuracy for weekly

repeating usage pattern

Figure 11: SLP Prediction Accuracy for daily repeating

Figure 12: MLP Prediction Accuracy for

usage pattern

MULTI LAYER PERCEPTRON WITH

BACK PROPAGATION

Test results show that MLP has the similar

performance to SLP when the usage pattern is regular as

with the daily repeating data set (Figure 13). For wee

usage patterns, however, its performance generally trails

SLP although the average is similar (Figure 10 and Figure

12). The main reason for this result is because MLP needs

to learn from existing data. When the data does not exhibit

a significant level of repeating usage patterns, conflicting

trends may arise and cause learning errors.

There are a number of error correction algorithms

that can be used with the MLP. These algorithms include

Back Propagation, Delta rule and Perceptron. Alsmadi et

al. [1] have examined the Back Propagation, Delta rule

and Perceptron algorithms and found that Back

Propagation gave the best result with the MLP as it is

designed to reduce the error between the actual output and

the desired output in a gradient descent manner

Beside the error correction, there are other

parameters that may affect the performance of the MLP.

The number of hidden layers used and the number of

hidden neurons in the hidden layers will in some ways

affect the performance of the neural network and

accuracy of the results. Much research has been done on

this area but so far there has been no single solution to all

problems on deciding the best selection of the parameters.

Bishop [2] states that an MLP with one hidden layer is

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 423

ccuracy

Weekly repeating

usage pattern

32.4%

61%

61.9%

Prediction Accuracy for weekly repeating

usage pattern

MULTI LAYER PERCEPTRON WITH

BACK PROPAGATION

Test results show that MLP has the similar

performance to SLP when the usage pattern is regular as

with the daily repeating data set (Figure 13). For weekly

usage patterns, however, its performance generally trails

SLP although the average is similar (Figure 10 and Figure

12). The main reason for this result is because MLP needs

to learn from existing data. When the data does not exhibit

l of repeating usage patterns, conflicting

trends may arise and cause learning errors.
There are a number of error correction algorithms

that can be used with the MLP. These algorithms include

Back Propagation, Delta rule and Perceptron. Alsmadi et

] have examined the Back Propagation, Delta rule

and Perceptron algorithms and found that Back

Propagation gave the best result with the MLP as it is

designed to reduce the error between the actual output and

the desired output in a gradient descent manner.

Beside the error correction, there are other

parameters that may affect the performance of the MLP.

The number of hidden layers used and the number of

hidden neurons in the hidden layers will in some ways

affect the performance of the neural network and the

accuracy of the results. Much research has been done on

this area but so far there has been no single solution to all

problems on deciding the best selection of the parameters.

Bishop [2] states that an MLP with one hidden layer is

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

sufficient to approximate any mapping to arbitrary

accuracy as long as there are sufficiently large numbers of

hidden neurons. However, there is an optimal number of

hidden neurons to be used for different networks.

Currently, there is no fixed answer to the optimal number

of hidden layers and hidden neurons to be used. When

there are significant processing steps to be operated on the

inputs before obtaining the outputs, then there may be a

benefit to having multiple hidden layers. Zurade [20]

stated that the number of hidden neurons depended on the

dimension n of the input vector and on the number of

separable disjoint regions in the n-dimension Euclidean

input space. He stated that there is a relationship between

M, n and J (number of hidden neurons) such that

M (J, n) =

It was proved in [19] that the maximum number

of n nodes is closely related to the N training pairs and

input dimension in the following formula:

, where

Table 3: Summary Overview of Prediction Accuracy

Prediction accuracy for

weekly repeating usage

pattern

With different number of hidden neurons, it was

observed that there is an average of 5% increment in the

processing time required with each new hidden neuron

added. This is especially an important consideration as the

processing power available on the mobile platform is very

limited. If there is not a big improvement in the

performance for using large numbers of neurons and

layers, then it would be better to use the minimum

required.

For the daily repeating usage pattern, MLP’s

performance is similar to the SLP algorithm in that it is

able to achieve over 90% accuracy due to consistency in

the input data patterns (Figure 13). This consistency in the

usage data also enables better training of the nueral

network. However, the MLP algorithm is observed to

introduce a considerable amount of lag into the application

due to this training.

The error correction for MLP is based on mean

squared error reduction (number of iterations required to

achieve the acceptable output). To achieve good mean

squared error reduction, the number of iterations must be

about 10,000. During testing with the 15 widgets, an

average lag of about 200ms was incurred for every

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

imate any mapping to arbitrary

accuracy as long as there are sufficiently large numbers of

hidden neurons. However, there is an optimal number of

hidden neurons to be used for different networks.

Currently, there is no fixed answer to the optimal number

hidden layers and hidden neurons to be used. When

there are significant processing steps to be operated on the

inputs before obtaining the outputs, then there may be a

benefit to having multiple hidden layers. Zurade [20]

neurons depended on the

of the input vector and on the number of M

dimension Euclidean

input space. He stated that there is a relationship between

(number of hidden neurons) such that

It was proved in [19] that the maximum number

training pairs and d

input dimension in the following formula:

, where C is a constant

The approach is to try an increasing sequence of

C to obtain different numbers of hidden nodes, train the

neural network for each n, and observe the

generates the smallest root mean squared error. Haykin

[12] stated that the optimal number of hidden neurons is a

number that would yield a performance near

Bayesian classifier. His tests showed that a MLP neural

network using two hidden neurons is already reasonably

close to the Bayesian performance (for his test problem).

There are also some rule-of-thumb methods specified in

[1] for determining the number of hidden neurons.

In our research, we also performed tests to see if

there is an improvement in the performance with different

number of hidden neurons. Table 3 shows the result of

using different numbers of hidden neurons and their

respective prediction accuracies. It is apparent that there is

no significant performance improvement observed when

using more hidden neurons. Each hidden neuron added to

the hidden layer also introduced more lag into the system

as more time is required to calculate the

Table 3: Summary Overview of Prediction Accuracy

Two

hidden

neurons

Three

hidden

neurons

Five

hidden

neurons

62% 62.5% 62.2%

With different number of hidden neurons, it was

observed that there is an average of 5% increment in the

processing time required with each new hidden neuron

added. This is especially an important consideration as the

le platform is very

limited. If there is not a big improvement in the

performance for using large numbers of neurons and

layers, then it would be better to use the minimum

For the daily repeating usage pattern, MLP’s

SLP algorithm in that it is

able to achieve over 90% accuracy due to consistency in

the input data patterns (Figure 13). This consistency in the

usage data also enables better training of the nueral

network. However, the MLP algorithm is observed to

duce a considerable amount of lag into the application

The error correction for MLP is based on mean-

squared error reduction (number of iterations required to

achieve the acceptable output). To achieve good mean-

n, the number of iterations must be

about 10,000. During testing with the 15 widgets, an

average lag of about 200ms was incurred for every

learning period. This lag may become significant if more

widgets and contexts are involved since the learning

duration is proportional to the product of the number of

widgets and number of contexts. Table 4 summarizes the

performance analysis and evaluation of the 3 learning

algorithms.

Figure 13: MLP Prediction Accuracy for daily repeating

usage pattern

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 424

The approach is to try an increasing sequence of

in different numbers of hidden nodes, train the

, and observe the n which

generates the smallest root mean squared error. Haykin

[12] stated that the optimal number of hidden neurons is a

number that would yield a performance near to the

Bayesian classifier. His tests showed that a MLP neural

network using two hidden neurons is already reasonably

close to the Bayesian performance (for his test problem).

thumb methods specified in

number of hidden neurons.

In our research, we also performed tests to see if

there is an improvement in the performance with different

number of hidden neurons. Table 3 shows the result of

using different numbers of hidden neurons and their

iction accuracies. It is apparent that there is

no significant performance improvement observed when

using more hidden neurons. Each hidden neuron added to

the hidden layer also introduced more lag into the system

as more time is required to calculate the output.

Table 3: Summary Overview of Prediction Accuracy

Ten

hidden

neurons

62.1%

learning period. This lag may become significant if more

widgets and contexts are involved since the learning

n is proportional to the product of the number of

widgets and number of contexts. Table 4 summarizes the

performance analysis and evaluation of the 3 learning

Figure 13: MLP Prediction Accuracy for daily repeating

usage pattern

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

Table 4: Summary of Performance Analysis and Ev

Learning

Algorithm

Prediction accuracy for

regular usage pattern

MI

SLP

MLP

CONCLUSION

In this paper, we have presented the design and

development of an intelligent interface reconfiguration

engine that is context-aware. Widget reconfiguration is

done dynamically without the need for modeling effort.

Test results show that both the Single Layer Perceptron

with Error Correction and Multi Layer Perceptron with

Back Propagation can be used for context

reconfiguration of the mobile phone interface. However,

the Single Layer Perceptron with Error Correction offers a

practical yet effective solution for a resource

mobile phone. It offers low computational overheads with

reasonable prediction accuracy for the typical mobile

phone user. Although competitive performance is offered

by the MLP, a period of learning with existing data is

required. Together with higher computational ov

may not be suitable as an on-the-fly approach. Future

work would include investigating the effectiveness of

approaches that include fuzzy logic engines and/or the

Kohonen neural network as well as deploying the system

on an actual mobile phone integrated to suitable wireless

sensor device inputs.

REFERENCES

[1] Alsmadi, M. K. S., Omar, K. B., & Noah, S. A.

(2009). Back Propagation Algorithm: The Best

Algorithm Among the Multi-Layer Perceptron

Algorithm. International Journal of Computer

Science and Network Security, 9(4),

[2] Bishop C. (1995). Neural Networks for Pattern

Recognition. Oxford University Press, ISBN:

0198538642, 116-160.

[3] Bontempi, G., Birattari M., & Bersini,

New learning paradigms in soft computing

Physica-Verlag Studies In Fuzziness And Soft

Computing Series, 97-136.

[4] Clerckx, T. Luyten, K. & Coninx, K. (

DynaMo-AID: A Design Process and a Runtime

Architecture for Dynamic Model

Interface Development. Engineering Human

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

Summary of Performance Analysis and Evaluation

Prediction accuracy for

regular usage pattern

Processing

power

requirements

Speed

Low Low Fast

Good Low Fast

Good High Slow

In this paper, we have presented the design and

development of an intelligent interface reconfiguration

aware. Widget reconfiguration is

done dynamically without the need for modeling effort.

Test results show that both the Single Layer Perceptron

ayer Perceptron with

Back Propagation can be used for context-aware

reconfiguration of the mobile phone interface. However,

the Single Layer Perceptron with Error Correction offers a

practical yet effective solution for a resource-constrained

It offers low computational overheads with

reasonable prediction accuracy for the typical mobile

phone user. Although competitive performance is offered

by the MLP, a period of learning with existing data is

required. Together with higher computational overheads, it

fly approach. Future

work would include investigating the effectiveness of

approaches that include fuzzy logic engines and/or the

Kohonen neural network as well as deploying the system

integrated to suitable wireless

Alsmadi, M. K. S., Omar, K. B., & Noah, S. A.

(2009). Back Propagation Algorithm: The Best

Layer Perceptron

International Journal of Computer

, 9(4), 378-383.

Neural Networks for Pattern

Oxford University Press, ISBN:

Bersini,H. (2002).

New learning paradigms in soft computing.

dies In Fuzziness And Soft

Clerckx, T. Luyten, K. & Coninx, K. (2004).

AID: A Design Process and a Runtime

Architecture for Dynamic Model-Based User

Engineering Human

Computer Interaction and Interac

Lecture Notes in Computer Science

871-876). Springer.

[5] Clerckx, T., Winters, F.

Tool Support for Designing Context

User Interface using a Model

Proceedings of the 4
th

Task Models and Diagrams for user interface

design, (pg 11-18). ACM Press.

[6] Coninx, K., Luyten, K.,

J. V. D., & Creemers,

Dynamically Generating Interfaces for Mobile

Computing Devices and Embedded S

International Symposium

Interaction with Mobile Devices and Services

Lecture Notes in Computer Science

257-272). Springer.

[7] Dey, A. K. & Newberger

Context-Aware Intelligibility and Contro

27th international conference on Human factors

in computing systems

ACM Press.

[8] A.K. Dey, Gregory D. Abowd,and Daniel Salber

(2001). A Conceptual Framework and a Toolkit

for Supporting the Rapid Prototyping of Context

Aware Applications

Interaction Journal, 16(2

[9] Du, W. & Wang L.

Application Programming for

Proceedings of the

Computer Science and Software Engineering

Vol. 290, (pg 215-227

[10] Eisenstein, J., Vanderdonckt, J., & Puerta, A.

(2001). Applying Model

Development of UIs for Mobile Computers

Proceedings of the 6th international conference

on Intelligent user interfaces

Press.

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 425

aluation

Complexity

Low

Average

High

Computer Interaction and Interactive Systems,

Lecture Notes in Computer Science, 3425, (pg

, F. and Coninx, K. (2005).

Tool Support for Designing Context-Sensitive

User Interface using a Model-Based Approach.
th
 International Workshop on

Task Models and Diagrams for user interface

ACM Press.

K., Vandervelpen, C., Bergh,

Creemers, B. (2003). Dygimes:

Dynamically Generating Interfaces for Mobile

Computing Devices and Embedded Systems. 5
th

International Symposium in Human-Computer

Interaction with Mobile Devices and Services,

Lecture Notes in Computer Science, 2795, (pg

Newberger (2009). A. Support for

Aware Intelligibility and Control. Proc.

27th international conference on Human factors

in computing systems, April 2009, (pg 859-868).

K. Dey, Gregory D. Abowd,and Daniel Salber

A Conceptual Framework and a Toolkit

for Supporting the Rapid Prototyping of Context-

Applications. Human-Computer

, 16(2-4), 97-166.

Du, W. & Wang L. (2008). Context-Aware

Application Programming for Mobile Device,

Proceedings of the Canadian Conference on

Computer Science and Software Engineering,

27).

Eisenstein, J., Vanderdonckt, J., & Puerta, A.

Applying Model-Based Techniques to the

Development of UIs for Mobile Computers.

Proceedings of the 6th international conference

on Intelligent user interfaces, (pg 69-76). ACM

 Volume 2 No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

[11] Gajos, K. Z. & Weld, D. S. (2004).

Automatically Generating Personalized

Interfaces. Proceedings of the 9th international

conference on Intelligent user interface

100). ACM Press.

[12] Haykin, S. S. (1999). Neural networks: a

comprehensive foundation. 2
nd

Hall.

[13] Heaton, J. (2008). Introduction to Neural

Networks with Java. 2
nd

Research.

[14] Henricksen, K. and Indulska,

Engineering Framework for Context

Pervasive Computing. Proceedings of the 2

IEEE International Conference on Pervasive

Computing and Communications

IEEE Computer Society.

[15] Kurniawan, S., Mahmud, M. and Nugroho, Y.

(2006). A Study of the Use of Mobile Phones by

Older Persons. Proceedings of the

Human Factors in Computing Systems

994). ACM New York.

[16] Maat L. and Pantic M. (2007), Gaze

Affective Multimodal Interface for Single

Office Scenarios. Proceedings of the ICMI 2006

and IJCAI 2007 international conference on

Artifical intelligence for human computing

171-178). Springer-Verlag.

[17] Satyanarayan, M. (1996).

Challenges in Mobile Computing,

the fifteenth annual ACM symposium on

Principles of distributed computing

ACM New York.

[18] Schmidt, A. (2006). Implicit Human Computer

Interaction Through Context.

Ubiquitous Computing, 4(2-3), 191

[19] Xu S. & Chen, L. (2008). A Novel Approach for

Determining the Optimal Number of Hidden

Layer Neurons for FNN’s and Its Application in

No.9, September 2011

Journal of Emerging Trends in Computing and Information Sciences

©2010-11 CIS Journal. All rights reserved.

http://www.cisjournal.org

(2004). SUPPLE :

Personalized User

Proceedings of the 9th international

conference on Intelligent user interface, (pg 93-

Neural networks: a

 Edition, Prentice

Introduction to Neural

 Edition, Heaton

and Indulska, J. A Software

Engineering Framework for Context-Aware

Proceedings of the 2
nd

EEE International Conference on Pervasive

Computing and Communications, (pg 77-86).

Kurniawan, S., Mahmud, M. and Nugroho, Y.

(2006). A Study of the Use of Mobile Phones by

Proceedings of the Conference on

rs in Computing Systems. (pg 989-

Gaze-X : Adaptive

Affective Multimodal Interface for Single-User

Proceedings of the ICMI 2006

and IJCAI 2007 international conference on

igence for human computing, (pg

(1996). Fundamental

Challenges in Mobile Computing, Proceedings of

the fifteenth annual ACM symposium on

Principles of distributed computing. (pp 1-7).

(2006). Implicit Human Computer

Interaction Through Context. Personal and

, 191-199.

A Novel Approach for

Determining the Optimal Number of Hidden

Layer Neurons for FNN’s and Its Application in

Data Mining. Proceedings of the

Conference on Information Technology and

Application. (pg 683-

[20] Zurade, J. M. (1992).

Neural Systems. PWS

[21] Android SDK. Retrieved

http://developer.android.com/index.html

[22] BBC News. Retrieved Feb 2011, from

http://news.bbc.co.uk/2/hi/technology/7833944.st

m

[23] HTC Hero. Retrieved Feb 2011, from

http://www.mobilitysite.com/2009/07/htc

widgets/

[24] HTC Hero Scenes. Retrieved Feb 2011, from

http://www.gsmarena.com/htc_hero

382p3.php

[25] HTC Touch Pro 2. Retrieved Feb 2011, from

http://pockethacks.com/htc

proximity-sensor-demo

[26] iPhone SDK. Retrieved Feb 2

http://developer.apple.com/iphone/

[27] Joone. Retrieved Feb 2011, from

http://sourceforge.net/projects/joone/

[28] Nokia 5500 tilt sensor

http://tech2.in.com/india/reviews/smart

mobile/nokia-5500-sport/3824/1

[29] S310 motion sensor. Retrieved Feb 2011, from

http://www.mobilefanatic.net/2006/06/samsung

motion-sensor.html

[30] Samsung Blade S5600v

from http://www.dintz.com/review

blade-gt-s5600v/

[31] Witmate available. Retrieved Feb 2011, from

http://www.witmate.com/

 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences

 426

Proceedings of the 5
th
 International

Conference on Information Technology and

-686). Springer-Verlag.

(1992). Introduction to Artificial

PWS Publishing Company.

Android SDK. Retrieved Feb 2011, from

http://developer.android.com/index.html

. Retrieved Feb 2011, from

http://news.bbc.co.uk/2/hi/technology/7833944.st

Retrieved Feb 2011, from

http://www.mobilitysite.com/2009/07/htc-hero-

. Retrieved Feb 2011, from

tp://www.gsmarena.com/htc_hero-review-

. Retrieved Feb 2011, from

http://pockethacks.com/htc-touch-pro2-

demo

. Retrieved Feb 2011, from

http://developer.apple.com/iphone/

. Retrieved Feb 2011, from

http://sourceforge.net/projects/joone/

Nokia 5500 tilt sensor. Retrieved Feb 2011, from

http://tech2.in.com/india/reviews/smart-

sport/3824/1

. Retrieved Feb 2011, from

http://www.mobilefanatic.net/2006/06/samsung-

Samsung Blade S5600v. Retrieved Feb 2011,

http://www.dintz.com/review-samsung-

. Retrieved Feb 2011, from

http://www.witmate.com/

