
VOL. 3, NO. 4, April 2012                                                                                                              ISSN 2079-8407 

Journal of Emerging Trends in Computing and Information Sciences 
©2009-2012 CIS Journal. All rights reserved. 

 
http://www.cisjournal.org 

  
456 

Concept-Oriented Model:  
Classes, Hierarchies and References Revisited  

Alexandr Savinov  
SAP Research, Chemnitzerstr. 48, 01187 Dresden, Germany  

http://conceptoriented.org/savinov  

ABSTRACT  
We present the concept-oriented model (COM) and demonstrate how its three main structural principles — duality, 
inclusion and partial order — naturally account for various typical data modeling issues. We argue that elements should be 
modeled as identity-entity couples and describe how a novel data modeling construct, called concept, can be used to model 
simultaneously two orthogonal branches: identity modeling and entity modeling. We show that it is enough to have one 
relation, called inclusion, to model value extension, hierarchical address spaces (via reference extension), inheritance and 
containment. We also demonstrate how partial order relation represented by references can be used for modeling 
multidimensional schemas, containment and domain-specific relationships.  
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1. INTRODUCTION  
1.1. Motivation and Major Goals  

One of the primary concerns in data modeling is data 
organization. Currently there exist many approaches to 
data organization relying on different structural principles. 
They implement various patterns of thought which are 
most appropriate for the corresponding application 
domain. Existing models use many different definitions 
and interpretations of semantic relationships which often 
result in quite ambiguous, incomplete and inconsistent 
conceptual specifications. Databases are split into many 
specialized solutions like transactional, analytical and 
semantic systems which use different models and query 
languages. Many of these problems are due to the 
existence of a number of deeply rooted incongruities, 
incompatibilities and asymmetries between different views 
of data which are shortly outlined below.  

Value vs. object modeling. Values (data passed by-
copy) and objects (data passed by-reference) have always 
been considered two separate branches: either we model 
value types or we model object types. A typical example is 
the object-relational model [17, 36, 37] where user-defined 
types are modeled separately from relations. Our goal here 
is to unify these two branches by using only one construct 
for defining types and only one kind of domains.  

Identity vs. entity modeling. There exist numerous 
studies [16, 39, 15, 10] highlighting identities as an 
essential part of data and programming models. 
Nonetheless, almost all existing data models have a strong 
bias towards modeling entities while identities (references, 
addresses, surrogates, OIDs) are considered secondary 
elements being modeled by means of entities. An extreme 
view is that identities belong to a physical level and should 
not be modeled at all (at least at the same level as entities). 
We would like to eliminate this asymmetry by making 
identities and entities equally important parts of a data 

element both being in the focus of data modeling and 
modeled at the same level.  

Instance-based vs. set-based modeling. Most models 
principally separate the notions of individual elements and 
sets of elements. For example, tuples and objects are 
viewed as individual data elements which are not sets (of 
other tuples and objects). A relation, on the other hand, is 
a set (of tuples) which however is not treated and operated 
like a normal data element (tuple or object). The goal here 
is to eliminate this difference so that any instance is 
inherently a set (of other instances) and hence sets are also 
normal instances. Another goal is to put any element in 
space (domain, context or scope) where it exists because a 
thing in vacuo outside of any space is considered 
nonsense. Data management is then reduced to 
maintaining set membership while other interpretations are 
derived from this relation. Ideally, all operations with data 
should be reduced to only adding an element to a set and 
removing an element from a set (where sets are other 
elements). In particular, properties also should be 
interpreted from the point of view of set membership 
relation rather than an independent mechanism.  

Transactional vs. analytical modeling. Assumptions 
and techniques behind analytical models are different from 
those behind transactional models. The primary notion in 
analytical models is that of dimension [21, 22] while 
transactional models are aimed mainly at modeling entities 
and relationships. Most conventional database systems 
provide very limited analytical functions while analytical 
systems are not intended for transactional processing at all. 
One negative consequence of this incompatibility is that 
one and the same data is modeled and managed two times: 
in a transactional database and in a data warehouse [8, 12, 
18]. The goal of COM here is to develop a data model 
which could be used for both purposes without any 
adaptation or tuning. In particular, dimensions and 
dimensionality (degrees of freedom) should be first-class 
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notions of the model rather than something auxiliary being 
added separately at later stages.  

Conceptual vs. logical modeling (semantic gap). The 
main purpose of conceptual models is to provide richer 
mechanisms and constructs representing complex 
application-specific concepts and relationships with the 
goal “to respond to queries and other transactions in a 
more intelligent manner” [7]. Yet, the translation 
procedure can be quite ambiguous and non-trivial because 
of the qualitative differences between the two levels of 
representation termed as the semantic gap [24, 20]. This 
frequently leads to the need in two separate models: one 
semantic model and one logical model. In this context, the 
goal is to make semantics integral part of the logical data 
model so that a database can directly use it for reasoning 
about data and maintaining its consistency. 

Entity vs. relationship modeling. Relationships may 
have properties, identities and their own relationships 
while entities may well be interpreted as relationships 
between other entities. Therefore it can be quite difficult to 
decide whether a domain concept should be represented as 
an entity or relationship, and this ambiguity can lead to 
different representations of the same data created by 
different designers. Removing these differences between 
entities and relationship by unifying their treatment would 
significantly simplify data modeling.  

Attributes vs. relationships. Both attributes and 
relationships are used to define model structure and 
connectivity. Existing conceptual models provide both 
mechanisms and therefore it can be difficult to decide 
which of them to use. For example, if a person lives in 
some country then this can be represented either by a field 
livesIn or a relationship livesIn. Our goal here is to unify 
these mechanisms by using a more general notion of 
reference.  

Data modeling vs. programming. This problem is 
frequently associated with the object-relational impedance 
mismatch [1, 9] but it has a wider scope because data is 
modeled and manipulated differently in programming and 
database areas. In particular, we would like to have the 
same type system suitable for both programming and 
databases.  

This paper presents the concept-oriented model (COM) 
which is a means of addressing the above problems. COM 
is a unified general purpose model which reduces a wide 
variety of existing data modeling methods to a few novel 
structural principles. Its main goal is to radically simplify 
data modeling by covering a large number of existing 
techniques and patterns. It also aims at reducing the 
number of primary data modeling constructs and 
increasing semantic integrity.  

1.2. Model Structure and Principles  

The general structure of the model is shown in Fig. 1 
and its major principles are shortly described below.  

 
Duality principle. Probably the most wide spread data 

modeling mechanism is to defining a new type by 
combining several existing data types. For example, a 
book is a combination of a publisher and a publication 
date. This idea is so general, simple and natural that it is 
supported by almost all data models where existing type 
definitions can be used as attribute types within other type 
definitions. It is so deeply embedded in our thinking that it 
is difficult to imagine how and for what reason it could be 
changed. Yet, we argue that defining a new type as a 
combination of other types is not enough for a good data 
model for at least two major reasons: (i) it is not possible 
to represent the distinction between by-value and by-
reference semantics, and (ii) it is not possible to model 
references which provide a basic connectivity mechanism.  

COM revisits this fundamental pattern by postulating 
in its duality principle that any element has two parts: 
identity and entity. Very informally, elements in COM can 
be thought of as complex numbers in mathematics which 
also have two constituents but are modeled and 
manipulated as one whole. Identity is passed by-value and 
entity is passed by-reference where reference is the 
corresponding identity. In Fig. 1, identities are shown as 
grey rounded rectangles coupled with entities which are 
shown as white rectangles. To model such identity-entity 
couples COM introduces a novel data modeling construct, 
called concept (hence the name of the model) which is 
defined as a couple of two classes: one identity class and 
one entity class. Instances of identity classes are values 
which are passed by-value while instances of entity classes 
are objects which are passed by-reference (that is, by 
means of identities). For example, a book could be 
modeled as a couple of its isbn which is its identity and its 
title which is part of its entity. Storing a reference to a 
book means storing its isbn as a value. If an element has 
no entity part then it is a value (like Date in Fig. 1) so that 
we can easily model value domains. If an element has no 
identity explicitly defined then it is a conventional entity 
or object represented by some kind of primitive reference 
(inherited from the root concept).  

Figure 1. Structure of the concept-oriented model  
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Inclusion principle. Hierarchies are supported by most 
data models but they have different purposes and 
interpretations like containment and inheritance. In the 
inclusion principle, COM postulates that all elements 
(except for one root element) exist in a hierarchy where 
identities of child elements are defined with respect to the 
identity of the parent element. Inclusion hierarchy spreads 
horizontally in Fig. 1 so that an element is a set of its child 
elements positioned to the right. For example, concept 
Publisher is included in concept Company which means 
that one company may have many publishers within it 
(say, many publishing departments) and each publisher 
instance is identified with respect to the company. 
Elements of this hierarchy are uniquely identified by a 
sequence of identity segments starting from the root 
(leftmost concept on diagrams) and ending with the 
represented element. Such complex identities are 
analogous to conventional postal addresses. An important 
property of inclusion relation is that it integrates 
identification, containment, inheritance and generalization 
relations. Including an element into a parent element 
means to identify it with respect to the parent, to inherit 
from the parent and to be more specific than the parent. 
For example, concept Writer is included in Person which 
means that Writer inherits from Person and can use its 
properties.  

Order principle. This principle postulates that all 
elements are partially ordered. Partial order is represented 
by references by assuming that an element references its 
greater elements. This structure is orthogonal to the 
structure of inclusion relation and spreads vertically in 
Fig. 1. Concepts are used to model partially ordered 
structure of elements by assuming that field types specify 
greater concepts. For example, a Book is a combination of 
its publishing Date and Publisher. Therefore, the latter two 
concepts are greater than the Book concept (greater 
concepts are positioned higher than lesser concepts in 
diagrams). Partial order is used in many models as a 
natural constraint imposed on existing relations. What is 
new in COM is that instead of introducing some specific 
mechanisms and then imposing partial order as a 
constraint we postulate that a model is a partially ordered 
set which is later interpreted from various points of view 
by using different assumptions about the nature of data. 
Data modeling is then significantly simplified because it is 
reduced to partially ordering concepts by defining their 
field types. The main benefit is that partial order “seems to 
fulfill a basic requirement of a general-purpose data 
model: wide applicability” [23], that is, many conventional 
data modeling mechanisms and patterns can be unified and 
explained in terms of this formal setting.  

Recently, a number of papers have been published [26, 
27, 28, 32, 33, 34] which describe either preliminary 
results or specific mechanisms of COM with the focus on 
query and analysis tasks. This paper focuses mainly on 
conceptual data modeling, data semantics and type 
modeling. We describe principles of the concept-oriented 
model from the point of view of existing approaches to 
conceptual data modeling. Each section describes one data 
modeling task and demonstrates how it can be solved 

using COM principles. The next three sections of the 
paper are devoted to describing the three principles of 
COM (duality, inclusion and partial order) and the last 
section makes concluding remarks.  

2. DUALITY — CLASSES REVISITED  
2.1. By-Value or By-Reference? Both  

The most wide-spread approach to defining a new type 
consists in combining several already existing types. For 
example, a class is a combination of fields and a relation is 
a combination of attributes. The problem is that such 
definitions do not provide any indication whether they 
describe values (passed by-value) or objects (passed by-
reference). Yet, without this information the type cannot 
be used because the size of its instances cannot be 
determined. If it is a value then the size is the sum of all 
field sizes, and if it is an object then its size is the size of 
its reference. For example, if type A is defined as a 
combination of types B and C, TYPE A {B f1; C f1}, then 
this definition is not complete because we do not know if 
instances of A will contain references to B and C or the 
values of types B and C. In most models, this ambiguity is 
resolved by using implicit assumptions about the 
semantics of their types (for instance, OOP assumes that 
class instances are passed by-reference) or by introducing 
a mechanism for specifying it for each individual element 
or context (for instance, a field could be marked by the 
keyword by-ref or by-val). Note that this problem exists 
also in conceptual models. For example, UML uses classes 
to describe what is supposed to be passed by-reference and 
data types to describe values.  

The main limitation of this classical approach is that it 
provides only two extreme options when choosing 
between by-value and by-reference semantics: either 
primitive references for representing objects or domain-
specific values. In particular, domain-specific structure 
can be specified either for values or for objects but not for 
both. If we want to pass some data by-value then it is not 
possible to interpret this value as a reference which 
represents some object. And if we want to pass some data 
by-reference then this reference can be only of primitive 
type and there is no way to specify arbitrary structure for 
it. In other words, it is not possible to specify that one part 
of an element has to be passed by-value by representing 
the second part which is an object passed by-reference. In 
the case of the relational [6] and object-relational [17, 36, 
37] models, this classical approach leads to the limitation 
that relations cannot be used as attribute types:  

TYPE MyValueType // Instances are values  
  // Relation as a type not possible 
  myField AS MyRelationType  
END TYPE  

RELATION MyRelationType  
  // Relation as a type not possible  
  myAttribute AS MyRelationType  
END RELATION  

In the case of object data models [2, 3, 10], the 
limitation is that fields will always contain primitive 
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values (OID) without a possibility to specify their 
structure:  

class MyObjectType  
  MyClass myField // No complex references  

If we want to have an arbitrary (domain-specific) value 
stored in a field then it can be done by defining a value 
type but in this case we lose the possibility to reference an 
object:  

class MyObjectType  
  // Value is not a reference 
  MyValueType myField  

Ideally, we would like to have a single construct for 
defining types without the separation between value types, 
object types, relation types or entity types. But at the same 
time, we would like to have a possibility to specify what 
part of the structure is represented by-value and what part 
is represented by-reference.  

It is a quite challenging problem which touches the 
fundamentals of data modeling. To solve it, COM revisits 
the notion of type by proposing to distinguish between, 
and explicitly specify, the type constituents to be passed 
by-value and by-reference. More specifically, COM 
introduces a new data modeling construct, called concept, 
defined as follows:  

Definition [Concept]. Concept is a couple consisting 
of one identity class and one entity class, where instances 
of the identity class are passed by-value and instances of 
the entity class are passed by-reference using the identity.  

The concept construct is compatible with the classical 
approach by producing two particular cases. If entity class 
is empty then the concept describes a value type because it 
consists of only an identity class, instances of which are 
passed by-value with absent referent. And if identity class 
is empty then it is equivalent to an object type, instances 
of which are passed by-reference. Strictly speaking, 
elements may not have empty identity because they must 
be somehow identified (no identity means non-existence). 
Therefore, empty identity class means that the identity will 
be inherited from the parent concept (see Section 3).  

For example, colors could be described as either values 
or objects:  

CONCEPT ColorValue //Instances are values  
  IDENTITY  
    INTEGER red, green, blue  
  ENTITY // Empty  

CONCEPT ColorObject //Instances are objects  
  IDENTITY // Empty  
  ENTITY  
    INTEGER red, green, blue  

However, the main use of concepts is in defining both 
constituents, which is not possible in existing models. For 
example, traditional methods do not allow us to define 
colors as elements identified by name (passed by-value) 
representing three constituents passed by-reference:  

CONCEPT Color  
  IDENTITY  
    CHAR(10) name  
  ENTITY  
    INTEGER red, green, blue  

Although any concept has two constituents, this 
internal division is not visible when it is used. Once a 
concept has been defined we can forget about its internal 
structure and use it as a conventional type. There is no 
difference between concepts and classes when using them 
for defining element types. The difference is that concept-
typed elements store identity and this value references the 
entity (both having arbitrary structure defined in this 
concept). For example, the first two variables below are 
value-typed and object-typed, while the third variable is 
concept-typed:  

ColorValue val // Stores a value  
ColorObject obj // Primitive reference  
Color field // CHAR(10) represents object  

One of the most important benefits of the concept-
oriented approach is that it generalizes and simplifies the 
object-relational model (as well as other approaches where 
attributes take values from a domain). These conventional 
approaches consider value domain modeling as a separate 
branch (Fig. 2a). In particular, if relations need to be 
modeled then it is done using an orthogonal approach. In 
object models classes are used to model objects (Fig. 2b) 
and values are modeled separately or only primitive values 
are used. The main benefit of concepts is that they are 
used for modeling both parts (Fig. 2c) by using only one 
kind of domains consisting of identity-entity couples 
(rather than value domains and relations). Therefore, it is 
enough to specify attribute types as concepts and then 
depending on the concept internal structure it will store 
either values or represent tuples in other relations. The 
duality principle has also many other advantages, 
particularly, for modeling references which are described 
in the next sections.  

 
2.2. Modeling References  

An entity is a thing which can be uniquely identified 
and has an independent existence. But what does it mean 

Object-relational  

Object-oriented  

Concept-oriented  

Modeling objects – 
primitive by-value 
part 

Modeling values – 
no by-reference 
part  
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Figure 2. An element is an identity-entity couple  
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for an entity to exist? Most models recognize the 
importance of identities as a means for representing 
entities: Yet, they do not answer the question what the 
identity is and how it should be modeled. There is an old 
belief that it is entity that should be in the focus of data 
modeling while identities (references) simply serve 
entities and should not be explicitly modeled. Therefore, 
the role of identities is still underestimated and their 
support is rather weak. The standard approach to 
identifying entities consists in selecting special attributes 
which are required to be unique and then are used to 
distinguish the entities. In this sense, the problem of 
identification is reduced to the problem of unique 
characterization. COM follows a different approach where 
identities exist separately from the represented entity 
which is closer to how objects are represented in the 
object-oriented model.  

In contrast to this dominating view, we argue that 
references not only should be integral part of the model 
but they should also have the same rights as entities. 
Identities are supposed to be as important as entities and a 
good data model should provide means for modeling 
arbitrary user-defined types of references. It is equally 
important to be able to directly model both identities and 
entities by retaining the differences between them. 
Identities in COM manifest the fact of the existence of a 
thing and modeling identities means describing how things 
exist. A thing is assumed to exist if it has an identity and if 
a thing does not have an identity then it is assumed to be 
non-existing. One of the crucial points in our 
argumentation is that references are normal values (which 
provide access to the values stored indirectly within 
objects). In other words, identities are data, that is, they 
are precisely what is transferred and what is stored. 
Therefore, if values are supposed to be integral part of the 
model then it is quite natural that there have to be means 
for modeling identities which are also values. Another 
point is that identities are an important part of the problem 
domain and hence a model should provide means for their 
description. For example, there could be a model 
describing only identities (an identification schema) 
without entities and it is much more convenient to use 
dedicated means for their description rather than by 
adopting entities for that purpose.  

Currently there exist two major approaches to 
modeling identities:  

• [Primitive references] Identities are automatically 
provided by the environment for all entities and cannot 
be modeled  

• [Identifier keys] A subset of entity attributes is used for 
identification purposes  

The first approach (Fig. 3a) means that domain-specific 
references are completely excluded from the model. The 
problem here is that it is not possible to directly model 
identities existing in the problem domain. For example, 
postal addresses, bank accounts, passport numbers, 
insurance codes and other domain-specific identities have 
to be modeled as entities represented by primitive 

references. Yet, the correct approach would be to model 
them directly as identities representing the corresponding 
entities.  

 
The second approach (Fig. 3b) solves the problem of 

domain-specific references by marking some entity 
attributes as keys. Yet, the problem with this approach is 
that even if some entity attributes are marked as keys they 
still belong to the entity. In particular, it is not possible to 
model references as value domains and this approach can 
be viewed as a pattern (with some advantages and 
disadvantages). For example, if banks are identified by 
their BIC (Bank Identifier Code) then it can be defined as 
an attribute marked as a key:  

class Bank  
  key CHAR(11) bic // Key attribute  
  CHAR(64) name // Normal attribute  
  Bank b // Primitive reference - not a key  

Importantly, instances of this class will have three 
attributes (not two) and variables of this class will still 
store a primitive reference rather than a key. Thus it can be 
viewed as a simulation of true domain-specific identities.  

Concepts (Fig. 3c) provide a principled solution to this 
problem because identities and entities are defined as two 
symmetric constituents of a data type. For example, the 
previous example can be modeled using the following 
concept:  

CONCEPT Bank  
  IDENTITY  
    // Identity attribute is a value  
    CHAR(11) bic  
  ENTITY  
    CHAR(64) name // Entity attribute  
    Bank bank // Stores BIC  

In contrast to using identifier keys, entities of this concept 
will have only two attributes while the first attribute (bic) 
is treated as a value which is not stored within this same 
entity. The last line looks like a conventional field 
definition. However, a reference stored in this field (bank) 
has a domain-specific structure described in the identity 
class of the Bank concept.  

A concept can be thought of as a description of custom 
memory where identities are used to access cell contents. 
The difference from conventional hardware memory is 

Primitive reference – 
strong and platform-
specific 

Identifying key – weak 
and domain-specific  

Concepts – strong and 
domain-specific  

Figure 3. Both identity and entity have arbitrary structure  
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that both addresses and cells have arbitrary structure. 
Importantly, cells do not store their addresses, that is, 
memory is an array of (addressable) cells rather than a 
two-column table of address-cell pairs.  

Identifier keys are also used in the relational model [6] 
where primary key (PK) attributes are intended for 
identifying tuples and foreign key attributes (FK) are used 
to reference other tuples. Although this approach allows 
for modeling domain-specific identities, it has a number of 
quite serious drawbacks described below.  

Weak type information. FK attributes (taken as whole) 
do not declare the type of the entity they represent. 
Instead, each FK attribute has a primitive (or user-defined) 
type only. For example, if an attribute is intended to 
represent a bank entity then it is declared as having type 
CHAR(11):  

bank AS CHAR(11) // True type is absent  

This definition is misleading because both the data 
modeler and the database system are completely unaware 
that this attribute represents a bank. Therefore, it will be 
manipulated as a character string while its true type is 
Bank and has to be manipulated like Bank. Of course, it is 
possible to restore the true type from the FK declaration. 
However, FKs are not part of the type system and are not 
mandatory part of schemas. Therefore, they may well be 
absent and then it is not possible to restore true attribute 
types at all. But even if FK declarations are present and 
the true attribute types can be restored then the question is 
what do we need attribute types for? FK attribute types in 
this case (like CHAR(11) in the above example) are 
redundant because they can be restored from the 
corresponding PK. For example, if we know (from FK) 
that an attribute represents a Bank then from the Bank 
definition (from its PK) we can derive that this attribute 
has to store a value of type CHAR(11). Thus the relational 
schema duplicates type information which makes it error-
prone and difficult to maintain. COM does not have this 
drawback because concepts incorporate both the type of 
reference and the type of the represented entity in one 
construct.  

PK structure is a cross-cutting concern. Assume that a 
primary key PK1 is defined as a set of attributes used for 
identification purposes. If PK2 references PK1 via FK2 
then all attributes of PK1 are declared again in FK2, that 
is, the structure of PK1 is repeated in FK2 (which is part 
of PK2). If the third primary key PK3 declares FK3 
representing PK2 then this FK3 will be declared as a set of 
all attributes from PK2 and PK1. Thus the structure of 
primary keys is repeatedly defined each time this key is 
used in a foreign key in nested manner. It is a typical 
cross-cutting concern where the same piece of code or 
type information cross-cuts the whole program or schema. 
Maintaining such schemas and queries can be a quite 
difficult task because any small change in a PK structure 
will have to be propagated all over the schema and 
queries. COM schema does not have this drawback 
because all necessary type information is declared only 
once and then the name of the concept is used to refer to it.  

Join does not reflect its purpose. Join operation has 
several major purposes which cannot be distinguished in 
its syntax. For example, if an SQL query specifies some 
join condition like WHERE A.id=B.id then it says almost 
nothing about its real intention. The meaning of queries is 
not directly expressed in the structure of operations. In 
particular, we do not know whether table A references 
table B or vice versa (or maybe it is not about referencing 
at all). Concepts allow us to overcome this complexity 
because one concept describes one reference: identity class 
describes the structure of reference while entity part 
described the structure of the referenced part. As a result, 
all the underlying mechanics of references like join 
conditions is not explicitly expressed in queries but 
concepts have the necessary information for translating 
such queries into low level database operations.  

3. INCLUSION — HIERARCHIES 
REVISITED  

3.1. Modeling Hierarchical Identities and Value 
Extension  

The main advantage of using domain-specific identities 
is that they allow us to directly model arbitrary address 
spaces which is difficult or impossible in other models. 
Yet, this approach is still limited because all elements of 
one type exist in one flat space and there is no way to 
describe structural addresses. For example, it is difficult to 
model conventional postal addresses where one segment 
like city is a relative address specified with respect to its 
parent segment like country. We also cannot model bank 
accounts which are defined relatively to their bank. In this 
case bank code is a parent segment and account number is 
a child segment of the address. The whole address 
consisting of several segments is an element in a 
hierarchical address space. One parent segment has many 
child address segments so a parent can be viewed as a set 
of its children. Although the notions of scope, space or 
context are considered in many models [15], they are 
provided as an additional mechanism or relationship while 
our goal is to introduce structural identities as an integral 
and primary part of the model.  

In the previous section we assumed that identity is a 
value. To solve the problem of hierarchical addresses we 
additionally assume that an extension of a value is a 
relative or local address with respect to the original (base) 
value. The operator of extension is denoted by colon. For 
example, if 'DE' is a value identifying a country then 
'DE':'Dresden' is an extended value which identifies a city 
within this country identified by the value 'Dresden'. If 
simple identities manifest the fact of existence then 
complex identifies manifest the fact of existence in space 
which means that an extended element exists in the space 
identified by its parent base segment.  

To model value extension and relative addresses COM 
introduces a new relation between concepts called 
inclusion, which specifies a parent concept this concept is 
included in. The parent concept is also called a super-
concept while a child concept is referred to as a sub-
concept. Elements are still identified by their identities but 
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now these identities are extensions of the parent identities 
which in turn extend their parent identity and so on up to 
the root which represents the whole space of elements or 
the universe of discourse. Thus a fully-specified identity of 
an element is a value which consists of several segments 
starting from the root and ending with the identity of this 
element.  

For example, if bank accounts are identified with 
respect to their bank (account without a bank is 
meaningless) then concept Account has to be included in 
concept Bank:  

CONCEPT Account IN Bank // Exists in bank  
  IDENTITY  
    // Extends identity of Bank 
    CHAR(10) accNo  
  ENTITY  
    DOUBLE balance // See next section  

If accounts are supposed to have savings accounts (savings 
account without some main account is meaningless) then 
this concept is included in the parent Account concept:  

CONCEPT Savings IN Account

3.2. Modeling Hierarchical Entities and Entity 
Extension  

 // In account  
  IDENTITY  
    // Two digits extend account number 
    CHAR(2) savAccNo  
  ENTITY  
    DOUBLE savings // See next section  

As a result, a bank consists of a number of accounts and 
each account is a set of savings accounts. Thus all 
elements exist in a hierarchical address space where they 
are distinguished by their complex identifies which are 
multi-segment values. Like any value, complex identities 
can passed and stored but they do not have their own 
references and therefore cannot be shared (they can only 
be copied). Inclusion in COM is similar to XML structure 
where parent elements contain child elements directly by-
value.  

A variable of a concept may store elements of its child 
concepts. For example, a value of concept Savings can be 
assigned to a variable of concept Account:  

Savings savings = getSavings();  
Account account = savings;  

This possibility to have additional segments in 
references is a concept-oriented analogue of 
polymorphism. If concepts have behavior then it results in 
even more interesting mechanisms like reverse overriding 
in concept-oriented programming (COP) [25] where 
parent method override child methods [29, 30, 31].  

One problem of conventional inheritance is asymmetry 
between classes and their instances: classes exist in a 
hierarchy where parents are shared among all their child 
classes while instances still exist in a flat space where 
parents are not shared and each child has its own copy of 
the parent data. It is not possible to reuse the same parent 

instance by creating several different extensions in its 
context. We can model hierarchies of classes but are not 
able to produce the corresponding hierarchy of instances. 
Since instance hierarchies are as important as class 
hierarchies, these two structures are modeled using 
different means: class hierarchies are modeled using 
inheritance while instance hierarchies are modeled using 
some kind of containment relationship. The difficulty of 
the existing methods is that they introduce many 
independent types of relations for expressing similar 
structures. There are also approaches where classes are not 
used [19] so that instances exist in a hierarchy [4] and 
inheritance is implemented via delegation [35]. Our goal is 
to use only one inclusion relation for representing many 
different semantics like address hierarchies, instance 
hierarchies, inheritance, containment and generalization-
specialization.  

As described in the previous section, inclusion is 
equivalent to value extension when applied to identities 
(interpreted as a relative or local address). But what about 
entities? Here concepts are cardinally different from what 
is expected from classes and classical extension. COM 
assumes that parent entities are shared parts of their 
children and one parent entity may have many child 
entities. For example, all account instances created within 
one bank see one and the same bank name which is an 
entity field in the Bank concept. And all savings accounts 
created within one main account see the same main 
balance which is an entity field in the Account concept. 
Thus entities also exist in a hierarchical space where they 
are identified by the corresponding hierarchical addresses. 
Note that this is only possible because of the presence of 
identities which serve as local addresses for entities in the 
hierarchy. And this is why having instance (entity) 
hierarchies is not possible by using conventional classes 
where child instances cannot be distinguished within their 
parent. Thus COM inclusion eliminates the asymmetry 
between classes and instances so that a concept hierarchy 
directly models instance hierarchies.  

Since an element may have many children, inclusion 
can be interpreted as a containment relation: any instance 
is a set of its child instances and any instance is a member 
within its parent instance so that the whole approach is 
inherently set-based. Since identities cannot be (easily) 
changed, elements cannot change their parent. It is a 
natural consequence of containment by-value where an 
element is created and always exists as a whole within one 
parent. An alternative containment by-reference is 
described in Section 4.2.  

Although modeling instance hierarchies and 
containment is a very important issue, we still would like 
to have a mechanism for modeling conventional 
inheritance. In COM, classical inheritance is a particular 
case of inclusion where a child concept (extension) has 
empty identity class. Such concepts are equivalent to 
conventional classes because their instances cannot be 
distinguished in the context of the parent instance. As a 
consequence, only one child instance can be created which 
is considered an extension of the parent. For example, if 
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we need to describe some very specific kind of account 
with an additional entity field then we can do it as follows:  

CONCEPT GoldAccount IN Account  
  IDENTITY // No identity => inheritance  
  ENTITY  
    DOUBLE interestRate // Entity extension  

A new instance of the parent concept is created for each 
instance of this concept. Therefore, the interestRate field 
can be thought of as directly extending the parent field 
(balance in this example).  

Inclusion can be illustrated using the following 
example. Assume that there are many rooms identified as 
'R1', 'R2', 'R3' and existing in one building which is 
identified as 'B1'. All rooms exist in the building by-value 
and cannot be easily moved to another building. 
Therefore, it does make sense to identify them with 
respect to the building, for example, room 'B1': 'R2' is the 
second room in the first building. Inheritance is a special 
case where a building is known to have only one room 
(say, a hall). Such rooms do not need a separate identity 
just because they can be uniquely identified using the 
building they are in (we say that a child inherits or reuses 
the parent identity). Such a room is viewed as an extension 
of the building because it simply adds some more specific 
attributes like the number of seats. Thus COM generalizes 
classical inheritance and provides a novel view on this 
relation by using the following principle: to be included in 
a container means to inherit its properties. In particular, 
members of a set automatically inherit properties of this 
set. This significantly simplifies data modeling because 
one relation is used to describe containment and 
inheritance.  

Another property of COM inclusion is that child 
elements are treated as more specific than their parents and 
hence inclusion can be used to represent general-specific 
relation. In terms of sets this means that members are 
more specific elements than the set they are in. To produce 
an element of a set we extend this set (by adding addition 
identity segments) and simultaneously more specific 
elements are produced.  

This approach can be successfully applied to relational 
modeling where inheritance was shown to be not very 
appropriate. Relation types can be declared as concepts 
with identities implemented as primary keys (but 
manipulated according the concept-oriented treatment of 
true identities). If a relation type needs to be extended then 
it is done by means of inclusion relation between the 
corresponding concepts. The extended relation will 
contain only instances of the child concept and there can 
be many such instances belonging to one parent instance 
stored in the parent relation. In the case of inheritance, 
identity of the extended relation type is empty and each 
parent tuple has maximum one child tuple. Note that if a 
relation type defines only identity class (with empty 
entity) then it is equivalent to defining a domain (value 
type) as it is done in the object-relational model (see 
Section 2). In this way we can significantly diminish the 
differences between relational and object-oriented 

modeling because concepts provide a common mechanism 
for modeling simultaneously value domains and relation 
types.  

4. PARTIAL ORDER — REFERENCES 
REVISITED  

4.1. References for Multidimensional Modeling  

A variety of approaches and techniques have been 
proposed for representing multidimensional data [21, 22]. 
Yet, one of their main problems is that these models are 
not intended for transactional processing and can be 
viewed more as models of analysis. What is worse, the 
analysis scenarios described by such models in great 
extent reflect the needs of concrete applications because 
defining cubes, dimensions and measures depend on what 
an application needs. Therefore, a data model is split into a 
transactional part which is application-independent and an 
analytical part which is application-oriented. This deeply 
rooted incongruity can be termed as a transactional-
analytical impedance mismatch and the need to have two 
models for the same data results in numerous problems at 
all stages of the enterprise data management system life-
cycle [8, 12, 18]. Currently there exist systems which 
serve as common storage for both transactional and 
analytical data. Yet, data modeling is still performed 
separately, that is, first a transactional model is created 
(possibly with a separate conceptual model) and then a 
multidimensional analytical model is provided which 
relies on the transactional model.  

COM eliminates differences between the two types of 
modeling so that one and the same model can be used for 
both transactional and analytical applications. The idea is 
based on the COM order principle which postulates that all 
elements in the model are partially ordered. Further, 
partial order is represented by references by assuming that 
referenced elements are greater than the referencing 
element. An important property of partial order is that it 
can be interpreted as a multidimensional hierarchical space 
where greater elements are interpreted as coordinates with 
respect to their lesser elements which are interpreted as 
points. For example, if a book element references a 
publisher then the book is interpreted as a point while the 
publisher is one of its coordinates.  

Concepts are also partially ordered by assuming that 
field types specify greater concepts. Each concept 
describes a multidimensional space with the fields 
interpreted as dimensions (it is precisely why concept 
fields in COM are referred to as dimensions). For example 
(Fig. 1), if books are characterized by publishers then this 
means that the Publisher concept is greater than the Book 
concept:  

CONCEPT Publisher ... // Greater concept  

CONCEPT Book // Lesser concept  
  ENTITY  
    // Type is a greater concept  
    Publisher publisher  
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According to the multidimensional interpretation, the 
Book concept describes points and the Publisher concept 
describes coordinates.  

Another example is shown in Fig. 4a where concept 
BookWriter has two fields of concepts Book and Writer. 
The Book concept has two fields referencing one 
Publisher and a Date of publishing. (In diagrams, greater 
concepts are positioned above their lesser concepts.) 
BookWriter is a lesser concept and hence it is positioned 
below Book and Writer which are greater concepts. 
However, the Book concept has also two fields of type 
Date and Publisher which therefore are greater concepts 
positioned higher than the Book concept. The 
multidimensional space for this schema is shown in 
Fig. 4b. BookWriter describes a 2-dimensional space 
because it has two greater concepts, Book and Writer. 
However, Book is also a 2-dimensional space with its own 
two dimensions Date and Publisher. The total model 
dimensionality is equal to the number of dimension paths 
from bottom to top concept. The model in Fig. 4 has 
dimensionality 3 which means that data element of 
concept BookWriter can be varied along three dimensions.  

 
This multidimensional interpretation is supported by 

operations of projection and de-projection denoted by 
right and left arrows, respectively. Projection means 
moving up in the partially ordered set to a greater concept. 
When applied to a set of elements (interpreted as points) it 
returns a set of their coordinates along the specified axis. 
A set of elements of some concept is denoted by this 
concept name written in parentheses. For example, given a 
set of books we can find the related publishers by 
projecting along the publisher dimension:  

(Book | date > '01.01.2005')  
  -> publisher -> (Publisher)  

De-projection is the opposite operation which means 
moving down to a lesser concept. When applied to a set of 
elements (interpreted as coordinates) it returns a set of 
points which take them. For example, given a set of 

publishers we can de-project them down and find all their 
books:  

(Publisher | name = 'XYZ')  
  <- publisher <- (Book)  

These operations serve as a basis for data analysis in 
COM. The general idea is that constraints are specified in 
some parts of the schema and then propagated to another 
part of the schema using a zig-zag dimension paths 
composed of projections and de-projections [27, 33]. For 
example, we could easily find all writers of a publisher by 
applying two de-projections followed by projection:  

(Publisher | name = 'XYZ')  
    <- publisher <- (Book)  
    <- book <- (BookWriter)  
    -> writer -> (Writer)  

One novel feature of this approach is that we can carry 
out inference on data by automatically propagating 
constraints to the target [28, 33]. In this case the above 
query is written even simpler without specifying a 
constraint propagation path:  

(Publisher | name = 'XYZ') <-*-> (Writer)  

Here <-*-> is inference operator which combines de-
projection and projection.  

An advantage of this approach is that it does not add 
complexity to the model but rather interprets partial order 
in terms of dimensions, points, coordinates and other 
notions used in multidimensional data modeling and 
analysis. From this point of view, adding a new field to a 
concept means adding a new dimension to the model. Data 
is thought of as originally existing in a multidimensional 
space so that it is always possible to say what coordinates 
this element has and how many dimensions this schema 
has. One and the same model can be used for modeling 
both transactional data and analytical data by eliminating 
the transactional-analytical impedance mismatch. COM is 
also more flexible than standard OLAP models because it 
does not rely on predefined cubes, dimensions and 
measures. Any concept can be used as a fact collection for 
its greater concepts and as a dimension for its lesser 
concepts. The notions of cube, dimensions and measure 
are supposed to be specific to concrete analysis scenarios 
and therefore are not part of the model.  

The partially ordered schema can also be viewed as a 
generalization of star and snow-flake schemas where 
lesser concepts correspond to fact tables and greater 
concepts describe detail tables. The difference is that 
COM concepts do not have such predefined roles. A 
concept is a fact concept for its greater concepts and it is a 
detail concept for its lesser concept.  

4.2. References for Modeling Containment  

Traditional conceptual modeling distinguishes several 
relationships which describe how elements belong to each 
other or are composed of other elements: containment, 
aggregation/composition and part-of. They are used as 
independent semantic units which are not bound to the 

Book  

book 

Date  Publisher  

publisher 

BookWriter  

Writer  

writer 

date 

Book 
e 

Writer Date 

Publisher 

Figure 4. Partial order interpreted as a multidimensional space 

a) 

b) 



VOL. 3, NO. 4, April 2012                                                                                                              ISSN 2079-8407 

Journal of Emerging Trends in Computing and Information Sciences 
©2009-2012 CIS Journal. All rights reserved. 

 
http://www.cisjournal.org 

  
465 

internal structure of entities defined via attributes. 
Therefore, data modeling is broken into two branches: 
defining attribute structure of entities and defining 
relationships among entities.  

COM eliminates this difference by using concept fields 
as elementary semantic units which also represent 
containment relation. It is achieved by providing a suitable 
interpretation of partial order relation rather than by 
introducing an additional independent mechanism. Partial 
order is interpreted in terms of containment by assuming 
that lesser elements are contained (by-reference) in their 
greater elements. Conversely, a greater element is a 
container for all its lesser elements. This interpretation 
means that references (modeled explicitly as identity-
entity couple) are not simply a means of connectivity but 
rather are elementary semantic units: to reference an 
element means to be included in it. At the level of 
concepts, a greater concept is interpreted as a collection of 
its lesser concepts. For example, if a Book is characterized 
by a Publisher which is the type of one of its fields then 
this means that the Publisher is a collection of Books 
(Fig. 5). And if each Book is characterized by some 
publication Date then one Date element is a collection of 
Books (with this publication date).  

 
An important question is what are the differences 

between containment described by inclusion relation 
(Section 3) and containment described by means of 
concept fields. The main difference is that inclusion 
relation implements containment by-value where identities 
of child elements extend the parent identity. In this case, 
elements cannot change their parent because their identity 
is defined there. If a parent is deleted then all its children 
(extensions) are also deleted and in this sense it is 
semantically closer to composition. Therefore, inclusion 
should be used for defining permanent containment for 
identification purposes. Containment by-reference can be 
always changed by changing values stored in fields.  

Partial order has also the opposite interpretation where 
an element is made up of its greater elements. For 
example, a Book is a combination of one Date and one 
Publisher. Thus an element is a combination of its greater 
elements (where it is a member) and a collection of its 
lesser elements (for which it is a set). The opposite 
character of these two relations is explicitly expressed via 
partial ordering but traditional models do not always 
distinguish between these two types of composition or 

introduce separate relations for them. It might be also 
useful to interpret partial order in logical and algebraic 
terms. In terms of logical connectives, an element is a 
conjunction of its greater elements and a disjunction of its 
lesser elements. In terms of algebraic operations, an 
element is a product of its greater elements and a sum of 
its lesser elements. 

Partial order can also be interpreted via specialization-
generalization relation by assuming that lesser concepts 
are more specific than their greater concepts. Note again 
that since partial order is implemented via references then 
this interpretation means that a referencing element is 
more specific than the referenced elements. It is quite 
natural because lesser concepts have some additional 
fields which make them more specific with respect to the 
greater concepts. By removing these additional fields we 
can reduce this concept to its greater concept so that the 
lesser concept IS-A greater concept. For example, the 
following concept is equivalent to its referenced (greater) 
concept because it does not define additional fields:  

CONCEPT BookVariation // The same as Book  
  IDENTITY  
  ENTITY  
    // Greater concept – more general 
    Book book  

If we add some new fields then it will be made more 
specific:  

CONCEPT HeavyBook // More specific  
  IDENTITY  
  ENTITY  
    // More general (greater) concept  
    Book book  
    DOUBLE weight  

Generalization-specialization can also be modeled 
using inclusion relations as described in Section 3. The 
difference is that inclusion implements it by-value (by 
means of extension) and more specific elements cannot 
change their more general parent. In contrast, partial order 
is implemented by-reference and hence more general 
elements can be changed by changing properties of the 
more specific elements. Just as with other mechanisms, the 
choice of inclusion or partial order is a matter of (good) 
design.  

4.3. References for Modeling Relationships  

Thinking in terms of relationships is one of the most 
successful and wide spread data modeling design pattern 
implemented as a basic principle in many models 
including the Entity Relationship model (ERM) [5] and 
fact-oriented models [38]. Relationships are one of the key 
data modeling constructs intended as a means of defining 
associations among entities, that is, how entities are 
related to each other. However, one basic problem here is 
that it is not always easy to distinguish between entities 
and relationships because both may have properties, 
produce instances and even have relationships between 
relationships. In addition, relationships may well depend 
on the task being solved which makes it difficult to 
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maintain clear separation between a model and its 
applications as well as makes translation to a logical level 
ambiguous.  

COM provides a solution to this problem by removing 
relationships as a separate data modeling construct. 
Instead, concepts can be interpreted as relationships with 
respect to other concepts. In other words, to be a 
relationship is a relative role of concepts in COM. This 
interpretation is defined in terms of partial order according 
to the following assumption: lesser concepts play a role of 
relationships and dependencies between greater concepts. 
A general data modeling pattern in this case is that if we 
have concepts and need to describe a relationship between 
them then it is necessary to introduce a new lesser 
concepts. For example (Fig. 6), if Book and Writer are 
known to be related (dependent) concepts then we simply 
add a new lesser concept BookWriter for describing this 
relationship. It is also easy to add a relationship between 
existing relationships because existing lesser concepts may 
have their own lesser concepts. For example, the Book 
concept in Fig. 6 relates two greater concepts Date and 
Publisher. However, Book is related with Writer via the 
BookWriter relationship. Note also that relationships are 
more specific than the concepts they relate.  

 
The main benefit of this approach is that there is only 

one main data modeling construct, concept, but we are still 
able to represent two phenomena: entities and 
relationships. To be an entity or relationship is a role 
which is determined by the concept position in the 
partially ordered structure. It is analogous to the relative 
role of coordinates and points in the multidimensional 
interpretation (Section 4.1), and the relative roles of 
container and its elements in the containment 
interpretation (Section 4.2). Relationships represented by 
lesser concepts can be easily used for navigation [26] by 
means of a pair of de-projection and projection operations 
where we start from some concept, then go down to the 
relationship concept (possibly along several path 
segments) and finally go up to the target concept. For 
example (Fig. 6), if Books and Writers are connected via 
the relationship BookWriter (lesser concept) then all books 
of some writer can be retrieved as follows:  

(Writer | name = 'Smith')  
  <- (BookWriter) -> (Book)  

Note that the BookWriter concept is between two arrows 
which is an indication that it is used as a (most specific) 
relationship. However, the Book concept can itself be 
treated as a relationship between its greater concepts Date 
and Publisher. Therefore it can be used to retrieve all 
publishers of the writer:  

(Writer | name = 'Smith')  
  <- (BookWriter) -> (Book) -> (Publisher)  

Another advantage of this approach is that 
relationships may have different application-specific 
interpretations by retaining the original data structure 
unchanged. These application-specific interpretations can 
be defined via concept methods. For example, the 
BookWriter relationship can be used to get all authors of 
one book represented as a hasWriters relationship and 
implemented as follows:  

CONCEPT Book  
  IDENTITY  
    CHAR(10) isbn  
  ENTITY  
    // Can be used as a field 
    (Writer) hasWriters() {  
      RETURN book <- (BookWriter)  
                  -> writer -> (Writer) 
    }  

The method hasWriters returns a collection of Writers 
which are found using the BookWriter concept interpreted 
as a relationship. First, this query uses de-projection 
operation for finding related BookWriter elements. 
Second, these elements are projected up to the Writer by 
finding all authors of this book. In other applications, we 
might need to define this relationship differently or to 
define additional relationships. This makes the model 
semantically more stable because it is less dependent on 
application-specific definitions of relationships.  

5. DISCUSSION  
Many existing data models are very similar in the way 

they represent real world entities. At least, most 
conventional models do not dispute that entities should be 
in the center of data modeling and by normally agreeing 
that they have to be uniquely identified and characterized 
by some properties. However, having only entities is not 
enough because some means of connectivity are 
apparently needed and this is precisely where most models 
differ by providing various mechanisms for structuring a 
set of entities:  

• Attributes are characteristics of entities which are 
thought of as slots for containing values or references. 
If an attribute contains a reference then it can be used 
for connectivity. Almost all models provide this 
mechanism except for fact-oriented attribute-free 
models like the object-role model [13] and NIAM [38].  

• Relationship is an independent data modeling construct 
which represents an association among several entities. 
This approach was first proposed in the entity-
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relationship model [5] and then used in many other 
conceptual models.  

• Join is a mechanism for finding related elements which 
contain the same values of attributes. This approach 
was first proposed in the relational model [6] but the 
idea of using common values for relating elements has 
its roots in logic-based methods. It is not widely used 
in conceptual modeling because join is a relatively low 
level operation used mostly at the level of queries.  

• Link is an element of a binary relation which is an 
explicit representation of one connection between two 
elements. One formalization of this approach is 
provided in a family of knowledge representation 
languages called description logic. It is the basis of the 
Semantic Web and related standards and models like 
RDF.  

In this context, COM can be characterized as an 
attribute-based model because concepts are defined in 
terms of attributes (called dimensions). However, 
attributes play much more important role in COM than in 
traditional models. First of all, COM does not distinguish 
between primitive, non-primitive and reference-valued 
attributes. There is only one kind of attributes which 
contain an identity representing some entity. Depending 
on what concept is used as the attribute type we can get 
different particular cases: a primitive or non-primitive 
value (entity class of the concept is empty), primitive or 
non-primitive reference (entity class of the concept is non-
empty), primitive reference (identity class of the concept is 
empty). Note that references in COM are different from 
links because reference is a value which provides access to 
entity attributes while a link can be viewed as a special 
entity which itself has to be somehow represented. In other 
words, references are values which are passed by-copy 
while links (like RDF triples) are entities which contain 
data about the source element (subject), the property 
(predicate) and target element (object). COM attributes are 
similar to existential facts in object-role modeling. The 
difference is that they are modeled using the duality 
principle (internal structure of concepts) rather than as 
relationships. Importantly, COM does not treat references 
as a particular case of relationships. References in COM 
are a more basic notion which is embedded in the 
definition of concepts. Essentially, COM assumes that it is 
not possible to model real world things without modeling 
references just because reference definition is part of the 
thing definition. When defining a concept we 
simultaneously define some reference structure in its 
identity class (which can be empty in particular cases).  

COM does not have a dedicated construct for 
representing domain-specific relationships and therefore it 
can be characterized as a relationship-free model. 
However, relationships still can be represented in COM by 
using concepts. The idea is that to be a relationship is a 
role of any concept with respect to its greater concepts. 
More specifically, a concept is regarded as a relationship 
for its greater concepts. Such a treatment of relationships 
allows us to avoid ambiguities when choosing between 

attributes and relationships as well as between entities and 
relationships. This approach is also more flexible because 
we avoid hard assignment of the role of relationship to the 
elements of the model so that relationships can participate 
in other relationships. COM principally distinguishes 
between two major notions and the corresponding 
mechanisms: representing things, and relating things. 
Things are represented by a value, called identity, the main 
function of which is providing access to the represented 
entity. Once represented, things can be related by using 
other things which store identities of the related elements. 
Note that an instance of a relationship is a normal element 
with its own identity which also can be related to other 
elements. On the other hand, a reference does not have its 
own separate identity and it is therefore not a binary 
relationship.  

If relationships are intended for representing domain-
specific associations between entities then semantic 
relations represent general purpose associations. There are 
several major semantic relations used in conceptual 
modeling and many their variations. The standard way to 
use semantic relations is to introduce a separate notation 
for each of them and it is actually the basis for 
contemporary conceptual modeling. An advantage is that 
such a model is independent of the implementation while a 
disadvantage is that its translation to a lower level can be 
quite ambiguous, requires high expertise, and eventually 
can be reduced to creating a completely new model. COM 
is different from conventional conceptual models in that it 
does not use a separate notation for semantic relations but 
rather provides an additional semantic interpretation to its 
basic constructs. The main advantage is that such a model 
is simpler because it can be used for both conceptual 
design and as a logical data model. However, this 
approach is more sensitive to the quality of the design 
because its basic constructs have a significant semantic 
load. For example, to assign a value to an attribute means 
to include this element to some set and to declare an 
attribute type means to specify an axis with coordinates for 
this concept instances.  

One novel feature of COM is that it provides two 
versions for its main semantic relations. It is a 
consequence of having two major mechanisms for 
describing new elements:  

• Extension is described by inclusion relation and allows 
for including new elements by-value  

• Combination is described by concepts and allows for 
including a new element into several combined 
elements by-reference  

For example, there are two ways to build a more 
specific element: either extending the base element (by 
including this concept into the super concept) or 
referencing the base element (by defining a new concept 
field with the type of the super concept). Semantically, to 
extend an element is equivalent to referencing it. The 
differences are in properties and uses of these two 
mechanisms. Extension is performed by-value which 
means that it is applied to identities (which are values) and 
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identities cannot change their parent. In contrast, 
combination is performed by-reference so that it is always 
possible to change the more general element (by setting 
the attribute value). It can be used to model multiple 
inheritance because each concept field actually defines a 
base element.  

COM can be characterized as a relationship-free and 
attributed-based model as opposed to attribute-free models 
which rely on only relationships as a sole data modeling 
construct. Attribute-free models capture data semantics in 
terms of atomic (elementary or existential) fact types and 
represent them as relationships. Prime examples of the 
fact-oriented approaches are the Object-Role Model 
(ORM) [13], Natural language Information Analysis 
Method (NIAM) [38] and the Predicator Set Model (PSM) 
[14]. When compared to the fact-oriented models, COM 
makes a fundamental distinction between references and 
(binary) relationships. Although mathematically they are 
equivalent, they are treated differently from the data 
modeling point of view. More specifically, references are 
values which are able to provide access to other values 
(entity attributes). They do not have their own references 
and can be represented only directly by copying their 
contents. References always have a direction. In contrast, 
relationships do not have a direction and are not treated as 
a way to indirectly represent another entity. (In fact, a 
value can play two roles simultaneously: it can represent 
some entity and it can relate several elements stored in its 
attributes.) One difficulty with having only relationships is 
that we cannot say how they are represented. Indeed, if a 
relationship has three roles then how they are 
implemented? If these three roles are not implemented via 
(binary) relationships then what they are? In terms of 
diagrams, what are the lines representing roles if not 
binary relationships? Probably, the only answer is that we 
do assume the existence of some kind of primitive 
references but do not explicitly introduce them into the 
model because they are not supposed to be modeled. COM 
solves this difficulty by explicitly fixing a special status of 
references which are not relationships but rather provide a 
basic way to represent things and also can be viewed as 
roles. Yet, these references can be and should be modeled 
by describing complex domain-specific identities and 
roles. On the other hand, COM completely removes 
relationships from the model by using concepts instead of 
them. Therefore a diagram in COM has only two 
elements: lines representing references (or roles) and 
boxes representing concepts treated as either entities or 
relationships.  

6. CONCLUSION  
In this paper we discussed the principles of COM from 

the point of view of type modeling and conceptual 
modeling. These three principles are summarized below.  

Duality. We argue that a data type should be broken 
into two equally important parts describing identities and 
entities. A model is then split into two orthogonal 
branches – identity modeling and entity modeling – by 
producing a nice yin-yang style of balance and symmetry 

between two sides of one reality. This allows us to make 
identities integral part of the model so that any entity must 
have an associated identity. A model can consist of only 
identities in the case it is intended for describing value 
types or an address space. Or it can describe only entities 
in the case it is aimed at modeling what is passed by-
reference. In the general case, however, any type has both 
constituents and one can freely vary between by-value and 
by-reference semantics. The duality principle provides a 
novel view on the notion of reference because now a type 
is used to describe both parts: a reference and a referent. 
Another immediate benefit is a generalization and 
simplification of the type system the in relational and 
object-relational models because there is only one kind of 
domain without the necessity to distinguish between value 
domains and relations.  

Inclusion. We also argue that it is enough to have one 
inclusion hierarchy to model hierarchical address spaces 
(where elements exist), containment (by-value) and 
inheritance (in a generalized form). This leads to an 
important principle: to include in a set means to inherit 
from this set and to be more specific than this set. 
Inclusion is also equivalent to identification with respect 
to the parent set which is implemented by extending the 
parent address. This approach also allows us to simplify 
data modeling because several mechanisms are described 
via one relation. In particular, it is possible to use 
inclusion as a conventional extension operator to add new 
properties and produce more specific data types. But this 
same relation is used to model hierarchical address spaces 
and containers. Another positive consequence of the 
inclusion principle is that we eliminate the asymmetry 
between classes (existing in hierarchy) and their instances 
(existing in flat space).  

Partial order. And the third main point is that partial 
order relation can describe many existing mechanisms and 
semantic relationships:  

• object-attribute-value - object is a lesser element and 
value is a greater element  

• multidimensional space - point is a lesser element and 
coordinate is a greater element  

• containment - greater elements are collections for 
lesser elements  

• relationships - lesser elements relate greater elements  

Data modeling is then reduced to partially ordering a set of 
concepts while other properties are derived from this 
structure. Importantly, the role of reference is revisited 
because they serve as elementary semantic units rather 
than a means of connectivity in a graph. In other words, 
the use of references is not limited by the possibility to 
retrieve elements and navigate through the graph structure. 
In COM, to reference an element means to specify a more 
general element, a coordinate for this element, a container 
for this element or a value for some attribute.  

This work is a step towards developing a unified model 
which provides equal support for transactional, analytical 
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and conceptual views on data. COM takes a holistic view 
on data by unifying a wide range of existing data modeling 
approaches and reducing them to only three major 
principles. The main benefit of these principles is that it 
significantly simplifies data modeling by eliminating or 
reducing many incompatibilities which stem from a large 
number of diverse data modeling techniques and patterns.  
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