
VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

456

Concept-Oriented Model:
Classes, Hierarchies and References Revisited

Alexandr Savinov
SAP Research, Chemnitzerstr. 48, 01187 Dresden, Germany

http://conceptoriented.org/savinov

ABSTRACT
We present the concept-oriented model (COM) and demonstrate how its three main structural principles — duality,
inclusion and partial order — naturally account for various typical data modeling issues. We argue that elements should be
modeled as identity-entity couples and describe how a novel data modeling construct, called concept, can be used to model
simultaneously two orthogonal branches: identity modeling and entity modeling. We show that it is enough to have one
relation, called inclusion, to model value extension, hierarchical address spaces (via reference extension), inheritance and
containment. We also demonstrate how partial order relation represented by references can be used for modeling
multidimensional schemas, containment and domain-specific relationships.

Keywords: Data modeling, Conceptual models, Unified models, Data semantics, Data types, Multidimensional models, Inheritance,
Partial order, References

1. INTRODUCTION
1.1. Motivation and Major Goals

One of the primary concerns in data modeling is data
organization. Currently there exist many approaches to
data organization relying on different structural principles.
They implement various patterns of thought which are
most appropriate for the corresponding application
domain. Existing models use many different definitions
and interpretations of semantic relationships which often
result in quite ambiguous, incomplete and inconsistent
conceptual specifications. Databases are split into many
specialized solutions like transactional, analytical and
semantic systems which use different models and query
languages. Many of these problems are due to the
existence of a number of deeply rooted incongruities,
incompatibilities and asymmetries between different views
of data which are shortly outlined below.

Value vs. object modeling. Values (data passed by-
copy) and objects (data passed by-reference) have always
been considered two separate branches: either we model
value types or we model object types. A typical example is
the object-relational model [17, 36, 37] where user-defined
types are modeled separately from relations. Our goal here
is to unify these two branches by using only one construct
for defining types and only one kind of domains.

Identity vs. entity modeling. There exist numerous
studies [16, 39, 15, 10] highlighting identities as an
essential part of data and programming models.
Nonetheless, almost all existing data models have a strong
bias towards modeling entities while identities (references,
addresses, surrogates, OIDs) are considered secondary
elements being modeled by means of entities. An extreme
view is that identities belong to a physical level and should
not be modeled at all (at least at the same level as entities).
We would like to eliminate this asymmetry by making
identities and entities equally important parts of a data

element both being in the focus of data modeling and
modeled at the same level.

Instance-based vs. set-based modeling. Most models
principally separate the notions of individual elements and
sets of elements. For example, tuples and objects are
viewed as individual data elements which are not sets (of
other tuples and objects). A relation, on the other hand, is
a set (of tuples) which however is not treated and operated
like a normal data element (tuple or object). The goal here
is to eliminate this difference so that any instance is
inherently a set (of other instances) and hence sets are also
normal instances. Another goal is to put any element in
space (domain, context or scope) where it exists because a
thing in vacuo outside of any space is considered
nonsense. Data management is then reduced to
maintaining set membership while other interpretations are
derived from this relation. Ideally, all operations with data
should be reduced to only adding an element to a set and
removing an element from a set (where sets are other
elements). In particular, properties also should be
interpreted from the point of view of set membership
relation rather than an independent mechanism.

Transactional vs. analytical modeling. Assumptions
and techniques behind analytical models are different from
those behind transactional models. The primary notion in
analytical models is that of dimension [21, 22] while
transactional models are aimed mainly at modeling entities
and relationships. Most conventional database systems
provide very limited analytical functions while analytical
systems are not intended for transactional processing at all.
One negative consequence of this incompatibility is that
one and the same data is modeled and managed two times:
in a transactional database and in a data warehouse [8, 12,
18]. The goal of COM here is to develop a data model
which could be used for both purposes without any
adaptation or tuning. In particular, dimensions and
dimensionality (degrees of freedom) should be first-class

http://conceptoriented.org/savinov�

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

457

notions of the model rather than something auxiliary being
added separately at later stages.

Conceptual vs. logical modeling (semantic gap). The
main purpose of conceptual models is to provide richer
mechanisms and constructs representing complex
application-specific concepts and relationships with the
goal “to respond to queries and other transactions in a
more intelligent manner” [7]. Yet, the translation
procedure can be quite ambiguous and non-trivial because
of the qualitative differences between the two levels of
representation termed as the semantic gap [24, 20]. This
frequently leads to the need in two separate models: one
semantic model and one logical model. In this context, the
goal is to make semantics integral part of the logical data
model so that a database can directly use it for reasoning
about data and maintaining its consistency.

Entity vs. relationship modeling. Relationships may
have properties, identities and their own relationships
while entities may well be interpreted as relationships
between other entities. Therefore it can be quite difficult to
decide whether a domain concept should be represented as
an entity or relationship, and this ambiguity can lead to
different representations of the same data created by
different designers. Removing these differences between
entities and relationship by unifying their treatment would
significantly simplify data modeling.

Attributes vs. relationships. Both attributes and
relationships are used to define model structure and
connectivity. Existing conceptual models provide both
mechanisms and therefore it can be difficult to decide
which of them to use. For example, if a person lives in
some country then this can be represented either by a field
livesIn or a relationship livesIn. Our goal here is to unify
these mechanisms by using a more general notion of
reference.

Data modeling vs. programming. This problem is
frequently associated with the object-relational impedance
mismatch [1, 9] but it has a wider scope because data is
modeled and manipulated differently in programming and
database areas. In particular, we would like to have the
same type system suitable for both programming and
databases.

This paper presents the concept-oriented model (COM)
which is a means of addressing the above problems. COM
is a unified general purpose model which reduces a wide
variety of existing data modeling methods to a few novel
structural principles. Its main goal is to radically simplify
data modeling by covering a large number of existing
techniques and patterns. It also aims at reducing the
number of primary data modeling constructs and
increasing semantic integrity.

1.2. Model Structure and Principles

The general structure of the model is shown in Fig. 1
and its major principles are shortly described below.

Duality principle. Probably the most wide spread data

modeling mechanism is to defining a new type by
combining several existing data types. For example, a
book is a combination of a publisher and a publication
date. This idea is so general, simple and natural that it is
supported by almost all data models where existing type
definitions can be used as attribute types within other type
definitions. It is so deeply embedded in our thinking that it
is difficult to imagine how and for what reason it could be
changed. Yet, we argue that defining a new type as a
combination of other types is not enough for a good data
model for at least two major reasons: (i) it is not possible
to represent the distinction between by-value and by-
reference semantics, and (ii) it is not possible to model
references which provide a basic connectivity mechanism.

COM revisits this fundamental pattern by postulating
in its duality principle that any element has two parts:
identity and entity. Very informally, elements in COM can
be thought of as complex numbers in mathematics which
also have two constituents but are modeled and
manipulated as one whole. Identity is passed by-value and
entity is passed by-reference where reference is the
corresponding identity. In Fig. 1, identities are shown as
grey rounded rectangles coupled with entities which are
shown as white rectangles. To model such identity-entity
couples COM introduces a novel data modeling construct,
called concept (hence the name of the model) which is
defined as a couple of two classes: one identity class and
one entity class. Instances of identity classes are values
which are passed by-value while instances of entity classes
are objects which are passed by-reference (that is, by
means of identities). For example, a book could be
modeled as a couple of its isbn which is its identity and its
title which is part of its entity. Storing a reference to a
book means storing its isbn as a value. If an element has
no entity part then it is a value (like Date in Fig. 1) so that
we can easily model value domains. If an element has no
identity explicitly defined then it is a conventional entity
or object represented by some kind of primitive reference
(inherited from the root concept).

Figure 1. Structure of the concept-oriented model

book

publisher

writer

date

Writer

Person

Book

BookWriter

Date

Publisher

Company

Inclusion relation (identification)

pa
rti

al
 o

rd
er

 re
la

tio
n

(c
ha

ra
ct

er
iz

at
io

n)

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

458

Inclusion principle. Hierarchies are supported by most
data models but they have different purposes and
interpretations like containment and inheritance. In the
inclusion principle, COM postulates that all elements
(except for one root element) exist in a hierarchy where
identities of child elements are defined with respect to the
identity of the parent element. Inclusion hierarchy spreads
horizontally in Fig. 1 so that an element is a set of its child
elements positioned to the right. For example, concept
Publisher is included in concept Company which means
that one company may have many publishers within it
(say, many publishing departments) and each publisher
instance is identified with respect to the company.
Elements of this hierarchy are uniquely identified by a
sequence of identity segments starting from the root
(leftmost concept on diagrams) and ending with the
represented element. Such complex identities are
analogous to conventional postal addresses. An important
property of inclusion relation is that it integrates
identification, containment, inheritance and generalization
relations. Including an element into a parent element
means to identify it with respect to the parent, to inherit
from the parent and to be more specific than the parent.
For example, concept Writer is included in Person which
means that Writer inherits from Person and can use its
properties.

Order principle. This principle postulates that all
elements are partially ordered. Partial order is represented
by references by assuming that an element references its
greater elements. This structure is orthogonal to the
structure of inclusion relation and spreads vertically in
Fig. 1. Concepts are used to model partially ordered
structure of elements by assuming that field types specify
greater concepts. For example, a Book is a combination of
its publishing Date and Publisher. Therefore, the latter two
concepts are greater than the Book concept (greater
concepts are positioned higher than lesser concepts in
diagrams). Partial order is used in many models as a
natural constraint imposed on existing relations. What is
new in COM is that instead of introducing some specific
mechanisms and then imposing partial order as a
constraint we postulate that a model is a partially ordered
set which is later interpreted from various points of view
by using different assumptions about the nature of data.
Data modeling is then significantly simplified because it is
reduced to partially ordering concepts by defining their
field types. The main benefit is that partial order “seems to
fulfill a basic requirement of a general-purpose data
model: wide applicability” [23], that is, many conventional
data modeling mechanisms and patterns can be unified and
explained in terms of this formal setting.

Recently, a number of papers have been published [26,
27, 28, 32, 33, 34] which describe either preliminary
results or specific mechanisms of COM with the focus on
query and analysis tasks. This paper focuses mainly on
conceptual data modeling, data semantics and type
modeling. We describe principles of the concept-oriented
model from the point of view of existing approaches to
conceptual data modeling. Each section describes one data
modeling task and demonstrates how it can be solved

using COM principles. The next three sections of the
paper are devoted to describing the three principles of
COM (duality, inclusion and partial order) and the last
section makes concluding remarks.

2. DUALITY — CLASSES REVISITED
2.1. By-Value or By-Reference? Both

The most wide-spread approach to defining a new type
consists in combining several already existing types. For
example, a class is a combination of fields and a relation is
a combination of attributes. The problem is that such
definitions do not provide any indication whether they
describe values (passed by-value) or objects (passed by-
reference). Yet, without this information the type cannot
be used because the size of its instances cannot be
determined. If it is a value then the size is the sum of all
field sizes, and if it is an object then its size is the size of
its reference. For example, if type A is defined as a
combination of types B and C, TYPE A {B f1; C f1}, then
this definition is not complete because we do not know if
instances of A will contain references to B and C or the
values of types B and C. In most models, this ambiguity is
resolved by using implicit assumptions about the
semantics of their types (for instance, OOP assumes that
class instances are passed by-reference) or by introducing
a mechanism for specifying it for each individual element
or context (for instance, a field could be marked by the
keyword by-ref or by-val). Note that this problem exists
also in conceptual models. For example, UML uses classes
to describe what is supposed to be passed by-reference and
data types to describe values.

The main limitation of this classical approach is that it
provides only two extreme options when choosing
between by-value and by-reference semantics: either
primitive references for representing objects or domain-
specific values. In particular, domain-specific structure
can be specified either for values or for objects but not for
both. If we want to pass some data by-value then it is not
possible to interpret this value as a reference which
represents some object. And if we want to pass some data
by-reference then this reference can be only of primitive
type and there is no way to specify arbitrary structure for
it. In other words, it is not possible to specify that one part
of an element has to be passed by-value by representing
the second part which is an object passed by-reference. In
the case of the relational [6] and object-relational [17, 36,
37] models, this classical approach leads to the limitation
that relations cannot be used as attribute types:

TYPE MyValueType // Instances are values
 // Relation as a type not possible
 myField AS MyRelationType
END TYPE

RELATION MyRelationType
 // Relation as a type not possible
 myAttribute AS MyRelationType
END RELATION

In the case of object data models [2, 3, 10], the
limitation is that fields will always contain primitive

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

459

values (OID) without a possibility to specify their
structure:

class MyObjectType
 MyClass myField // No complex references

If we want to have an arbitrary (domain-specific) value
stored in a field then it can be done by defining a value
type but in this case we lose the possibility to reference an
object:

class MyObjectType
 // Value is not a reference
 MyValueType myField

Ideally, we would like to have a single construct for
defining types without the separation between value types,
object types, relation types or entity types. But at the same
time, we would like to have a possibility to specify what
part of the structure is represented by-value and what part
is represented by-reference.

It is a quite challenging problem which touches the
fundamentals of data modeling. To solve it, COM revisits
the notion of type by proposing to distinguish between,
and explicitly specify, the type constituents to be passed
by-value and by-reference. More specifically, COM
introduces a new data modeling construct, called concept,
defined as follows:

Definition [Concept]. Concept is a couple consisting
of one identity class and one entity class, where instances
of the identity class are passed by-value and instances of
the entity class are passed by-reference using the identity.

The concept construct is compatible with the classical
approach by producing two particular cases. If entity class
is empty then the concept describes a value type because it
consists of only an identity class, instances of which are
passed by-value with absent referent. And if identity class
is empty then it is equivalent to an object type, instances
of which are passed by-reference. Strictly speaking,
elements may not have empty identity because they must
be somehow identified (no identity means non-existence).
Therefore, empty identity class means that the identity will
be inherited from the parent concept (see Section 3).

For example, colors could be described as either values
or objects:

CONCEPT ColorValue //Instances are values
 IDENTITY
 INTEGER red, green, blue
 ENTITY // Empty

CONCEPT ColorObject //Instances are objects
 IDENTITY // Empty
 ENTITY
 INTEGER red, green, blue

However, the main use of concepts is in defining both
constituents, which is not possible in existing models. For
example, traditional methods do not allow us to define
colors as elements identified by name (passed by-value)
representing three constituents passed by-reference:

CONCEPT Color
 IDENTITY
 CHAR(10) name
 ENTITY
 INTEGER red, green, blue

Although any concept has two constituents, this
internal division is not visible when it is used. Once a
concept has been defined we can forget about its internal
structure and use it as a conventional type. There is no
difference between concepts and classes when using them
for defining element types. The difference is that concept-
typed elements store identity and this value references the
entity (both having arbitrary structure defined in this
concept). For example, the first two variables below are
value-typed and object-typed, while the third variable is
concept-typed:

ColorValue val // Stores a value
ColorObject obj // Primitive reference
Color field // CHAR(10) represents object

One of the most important benefits of the concept-
oriented approach is that it generalizes and simplifies the
object-relational model (as well as other approaches where
attributes take values from a domain). These conventional
approaches consider value domain modeling as a separate
branch (Fig. 2a). In particular, if relations need to be
modeled then it is done using an orthogonal approach. In
object models classes are used to model objects (Fig. 2b)
and values are modeled separately or only primitive values
are used. The main benefit of concepts is that they are
used for modeling both parts (Fig. 2c) by using only one
kind of domains consisting of identity-entity couples
(rather than value domains and relations). Therefore, it is
enough to specify attribute types as concepts and then
depending on the concept internal structure it will store
either values or represent tuples in other relations. The
duality principle has also many other advantages,
particularly, for modeling references which are described
in the next sections.

2.2. Modeling References

An entity is a thing which can be uniquely identified
and has an independent existence. But what does it mean

Object-relational

Object-oriented

Concept-oriented

Modeling objects –
primitive by-value
part

Modeling values –
no by-reference
part

Both parts have
arbitrary structure

Figure 2. An element is an identity-entity couple

a)

b)

c)

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

460

for an entity to exist? Most models recognize the
importance of identities as a means for representing
entities: Yet, they do not answer the question what the
identity is and how it should be modeled. There is an old
belief that it is entity that should be in the focus of data
modeling while identities (references) simply serve
entities and should not be explicitly modeled. Therefore,
the role of identities is still underestimated and their
support is rather weak. The standard approach to
identifying entities consists in selecting special attributes
which are required to be unique and then are used to
distinguish the entities. In this sense, the problem of
identification is reduced to the problem of unique
characterization. COM follows a different approach where
identities exist separately from the represented entity
which is closer to how objects are represented in the
object-oriented model.

In contrast to this dominating view, we argue that
references not only should be integral part of the model
but they should also have the same rights as entities.
Identities are supposed to be as important as entities and a
good data model should provide means for modeling
arbitrary user-defined types of references. It is equally
important to be able to directly model both identities and
entities by retaining the differences between them.
Identities in COM manifest the fact of the existence of a
thing and modeling identities means describing how things
exist. A thing is assumed to exist if it has an identity and if
a thing does not have an identity then it is assumed to be
non-existing. One of the crucial points in our
argumentation is that references are normal values (which
provide access to the values stored indirectly within
objects). In other words, identities are data, that is, they
are precisely what is transferred and what is stored.
Therefore, if values are supposed to be integral part of the
model then it is quite natural that there have to be means
for modeling identities which are also values. Another
point is that identities are an important part of the problem
domain and hence a model should provide means for their
description. For example, there could be a model
describing only identities (an identification schema)
without entities and it is much more convenient to use
dedicated means for their description rather than by
adopting entities for that purpose.

Currently there exist two major approaches to
modeling identities:

• [Primitive references] Identities are automatically
provided by the environment for all entities and cannot
be modeled

• [Identifier keys] A subset of entity attributes is used for
identification purposes

The first approach (Fig. 3a) means that domain-specific
references are completely excluded from the model. The
problem here is that it is not possible to directly model
identities existing in the problem domain. For example,
postal addresses, bank accounts, passport numbers,
insurance codes and other domain-specific identities have
to be modeled as entities represented by primitive

references. Yet, the correct approach would be to model
them directly as identities representing the corresponding
entities.

The second approach (Fig. 3b) solves the problem of

domain-specific references by marking some entity
attributes as keys. Yet, the problem with this approach is
that even if some entity attributes are marked as keys they
still belong to the entity. In particular, it is not possible to
model references as value domains and this approach can
be viewed as a pattern (with some advantages and
disadvantages). For example, if banks are identified by
their BIC (Bank Identifier Code) then it can be defined as
an attribute marked as a key:

class Bank
 key CHAR(11) bic // Key attribute
 CHAR(64) name // Normal attribute
 Bank b // Primitive reference - not a key

Importantly, instances of this class will have three
attributes (not two) and variables of this class will still
store a primitive reference rather than a key. Thus it can be
viewed as a simulation of true domain-specific identities.

Concepts (Fig. 3c) provide a principled solution to this
problem because identities and entities are defined as two
symmetric constituents of a data type. For example, the
previous example can be modeled using the following
concept:

CONCEPT Bank
 IDENTITY
 // Identity attribute is a value
 CHAR(11) bic
 ENTITY
 CHAR(64) name // Entity attribute
 Bank bank // Stores BIC

In contrast to using identifier keys, entities of this concept
will have only two attributes while the first attribute (bic)
is treated as a value which is not stored within this same
entity. The last line looks like a conventional field
definition. However, a reference stored in this field (bank)
has a domain-specific structure described in the identity
class of the Bank concept.

A concept can be thought of as a description of custom
memory where identities are used to access cell contents.
The difference from conventional hardware memory is

Primitive reference –
strong and platform-
specific

Identifying key – weak
and domain-specific

Concepts – strong and
domain-specific

Figure 3. Both identity and entity have arbitrary structure

PK
surrogate

a)

b)

c)

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

461

that both addresses and cells have arbitrary structure.
Importantly, cells do not store their addresses, that is,
memory is an array of (addressable) cells rather than a
two-column table of address-cell pairs.

Identifier keys are also used in the relational model [6]
where primary key (PK) attributes are intended for
identifying tuples and foreign key attributes (FK) are used
to reference other tuples. Although this approach allows
for modeling domain-specific identities, it has a number of
quite serious drawbacks described below.

Weak type information. FK attributes (taken as whole)
do not declare the type of the entity they represent.
Instead, each FK attribute has a primitive (or user-defined)
type only. For example, if an attribute is intended to
represent a bank entity then it is declared as having type
CHAR(11):

bank AS CHAR(11) // True type is absent

This definition is misleading because both the data
modeler and the database system are completely unaware
that this attribute represents a bank. Therefore, it will be
manipulated as a character string while its true type is
Bank and has to be manipulated like Bank. Of course, it is
possible to restore the true type from the FK declaration.
However, FKs are not part of the type system and are not
mandatory part of schemas. Therefore, they may well be
absent and then it is not possible to restore true attribute
types at all. But even if FK declarations are present and
the true attribute types can be restored then the question is
what do we need attribute types for? FK attribute types in
this case (like CHAR(11) in the above example) are
redundant because they can be restored from the
corresponding PK. For example, if we know (from FK)
that an attribute represents a Bank then from the Bank
definition (from its PK) we can derive that this attribute
has to store a value of type CHAR(11). Thus the relational
schema duplicates type information which makes it error-
prone and difficult to maintain. COM does not have this
drawback because concepts incorporate both the type of
reference and the type of the represented entity in one
construct.

PK structure is a cross-cutting concern. Assume that a
primary key PK1 is defined as a set of attributes used for
identification purposes. If PK2 references PK1 via FK2
then all attributes of PK1 are declared again in FK2, that
is, the structure of PK1 is repeated in FK2 (which is part
of PK2). If the third primary key PK3 declares FK3
representing PK2 then this FK3 will be declared as a set of
all attributes from PK2 and PK1. Thus the structure of
primary keys is repeatedly defined each time this key is
used in a foreign key in nested manner. It is a typical
cross-cutting concern where the same piece of code or
type information cross-cuts the whole program or schema.
Maintaining such schemas and queries can be a quite
difficult task because any small change in a PK structure
will have to be propagated all over the schema and
queries. COM schema does not have this drawback
because all necessary type information is declared only
once and then the name of the concept is used to refer to it.

Join does not reflect its purpose. Join operation has
several major purposes which cannot be distinguished in
its syntax. For example, if an SQL query specifies some
join condition like WHERE A.id=B.id then it says almost
nothing about its real intention. The meaning of queries is
not directly expressed in the structure of operations. In
particular, we do not know whether table A references
table B or vice versa (or maybe it is not about referencing
at all). Concepts allow us to overcome this complexity
because one concept describes one reference: identity class
describes the structure of reference while entity part
described the structure of the referenced part. As a result,
all the underlying mechanics of references like join
conditions is not explicitly expressed in queries but
concepts have the necessary information for translating
such queries into low level database operations.

3. INCLUSION — HIERARCHIES
REVISITED

3.1. Modeling Hierarchical Identities and Value
Extension

The main advantage of using domain-specific identities
is that they allow us to directly model arbitrary address
spaces which is difficult or impossible in other models.
Yet, this approach is still limited because all elements of
one type exist in one flat space and there is no way to
describe structural addresses. For example, it is difficult to
model conventional postal addresses where one segment
like city is a relative address specified with respect to its
parent segment like country. We also cannot model bank
accounts which are defined relatively to their bank. In this
case bank code is a parent segment and account number is
a child segment of the address. The whole address
consisting of several segments is an element in a
hierarchical address space. One parent segment has many
child address segments so a parent can be viewed as a set
of its children. Although the notions of scope, space or
context are considered in many models [15], they are
provided as an additional mechanism or relationship while
our goal is to introduce structural identities as an integral
and primary part of the model.

In the previous section we assumed that identity is a
value. To solve the problem of hierarchical addresses we
additionally assume that an extension of a value is a
relative or local address with respect to the original (base)
value. The operator of extension is denoted by colon. For
example, if 'DE' is a value identifying a country then
'DE':'Dresden' is an extended value which identifies a city
within this country identified by the value 'Dresden'. If
simple identities manifest the fact of existence then
complex identifies manifest the fact of existence in space
which means that an extended element exists in the space
identified by its parent base segment.

To model value extension and relative addresses COM
introduces a new relation between concepts called
inclusion, which specifies a parent concept this concept is
included in. The parent concept is also called a super-
concept while a child concept is referred to as a sub-
concept. Elements are still identified by their identities but

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

462

now these identities are extensions of the parent identities
which in turn extend their parent identity and so on up to
the root which represents the whole space of elements or
the universe of discourse. Thus a fully-specified identity of
an element is a value which consists of several segments
starting from the root and ending with the identity of this
element.

For example, if bank accounts are identified with
respect to their bank (account without a bank is
meaningless) then concept Account has to be included in
concept Bank:

CONCEPT Account IN Bank // Exists in bank
 IDENTITY
 // Extends identity of Bank
 CHAR(10) accNo
 ENTITY
 DOUBLE balance // See next section

If accounts are supposed to have savings accounts (savings
account without some main account is meaningless) then
this concept is included in the parent Account concept:

CONCEPT Savings IN Account

3.2. Modeling Hierarchical Entities and Entity
Extension

 // In account
 IDENTITY
 // Two digits extend account number
 CHAR(2) savAccNo
 ENTITY
 DOUBLE savings // See next section

As a result, a bank consists of a number of accounts and
each account is a set of savings accounts. Thus all
elements exist in a hierarchical address space where they
are distinguished by their complex identifies which are
multi-segment values. Like any value, complex identities
can passed and stored but they do not have their own
references and therefore cannot be shared (they can only
be copied). Inclusion in COM is similar to XML structure
where parent elements contain child elements directly by-
value.

A variable of a concept may store elements of its child
concepts. For example, a value of concept Savings can be
assigned to a variable of concept Account:

Savings savings = getSavings();
Account account = savings;

This possibility to have additional segments in
references is a concept-oriented analogue of
polymorphism. If concepts have behavior then it results in
even more interesting mechanisms like reverse overriding
in concept-oriented programming (COP) [25] where
parent method override child methods [29, 30, 31].

One problem of conventional inheritance is asymmetry
between classes and their instances: classes exist in a
hierarchy where parents are shared among all their child
classes while instances still exist in a flat space where
parents are not shared and each child has its own copy of
the parent data. It is not possible to reuse the same parent

instance by creating several different extensions in its
context. We can model hierarchies of classes but are not
able to produce the corresponding hierarchy of instances.
Since instance hierarchies are as important as class
hierarchies, these two structures are modeled using
different means: class hierarchies are modeled using
inheritance while instance hierarchies are modeled using
some kind of containment relationship. The difficulty of
the existing methods is that they introduce many
independent types of relations for expressing similar
structures. There are also approaches where classes are not
used [19] so that instances exist in a hierarchy [4] and
inheritance is implemented via delegation [35]. Our goal is
to use only one inclusion relation for representing many
different semantics like address hierarchies, instance
hierarchies, inheritance, containment and generalization-
specialization.

As described in the previous section, inclusion is
equivalent to value extension when applied to identities
(interpreted as a relative or local address). But what about
entities? Here concepts are cardinally different from what
is expected from classes and classical extension. COM
assumes that parent entities are shared parts of their
children and one parent entity may have many child
entities. For example, all account instances created within
one bank see one and the same bank name which is an
entity field in the Bank concept. And all savings accounts
created within one main account see the same main
balance which is an entity field in the Account concept.
Thus entities also exist in a hierarchical space where they
are identified by the corresponding hierarchical addresses.
Note that this is only possible because of the presence of
identities which serve as local addresses for entities in the
hierarchy. And this is why having instance (entity)
hierarchies is not possible by using conventional classes
where child instances cannot be distinguished within their
parent. Thus COM inclusion eliminates the asymmetry
between classes and instances so that a concept hierarchy
directly models instance hierarchies.

Since an element may have many children, inclusion
can be interpreted as a containment relation: any instance
is a set of its child instances and any instance is a member
within its parent instance so that the whole approach is
inherently set-based. Since identities cannot be (easily)
changed, elements cannot change their parent. It is a
natural consequence of containment by-value where an
element is created and always exists as a whole within one
parent. An alternative containment by-reference is
described in Section 4.2.

Although modeling instance hierarchies and
containment is a very important issue, we still would like
to have a mechanism for modeling conventional
inheritance. In COM, classical inheritance is a particular
case of inclusion where a child concept (extension) has
empty identity class. Such concepts are equivalent to
conventional classes because their instances cannot be
distinguished in the context of the parent instance. As a
consequence, only one child instance can be created which
is considered an extension of the parent. For example, if

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

463

we need to describe some very specific kind of account
with an additional entity field then we can do it as follows:

CONCEPT GoldAccount IN Account
 IDENTITY // No identity => inheritance
 ENTITY
 DOUBLE interestRate // Entity extension

A new instance of the parent concept is created for each
instance of this concept. Therefore, the interestRate field
can be thought of as directly extending the parent field
(balance in this example).

Inclusion can be illustrated using the following
example. Assume that there are many rooms identified as
'R1', 'R2', 'R3' and existing in one building which is
identified as 'B1'. All rooms exist in the building by-value
and cannot be easily moved to another building.
Therefore, it does make sense to identify them with
respect to the building, for example, room 'B1': 'R2' is the
second room in the first building. Inheritance is a special
case where a building is known to have only one room
(say, a hall). Such rooms do not need a separate identity
just because they can be uniquely identified using the
building they are in (we say that a child inherits or reuses
the parent identity). Such a room is viewed as an extension
of the building because it simply adds some more specific
attributes like the number of seats. Thus COM generalizes
classical inheritance and provides a novel view on this
relation by using the following principle: to be included in
a container means to inherit its properties. In particular,
members of a set automatically inherit properties of this
set. This significantly simplifies data modeling because
one relation is used to describe containment and
inheritance.

Another property of COM inclusion is that child
elements are treated as more specific than their parents and
hence inclusion can be used to represent general-specific
relation. In terms of sets this means that members are
more specific elements than the set they are in. To produce
an element of a set we extend this set (by adding addition
identity segments) and simultaneously more specific
elements are produced.

This approach can be successfully applied to relational
modeling where inheritance was shown to be not very
appropriate. Relation types can be declared as concepts
with identities implemented as primary keys (but
manipulated according the concept-oriented treatment of
true identities). If a relation type needs to be extended then
it is done by means of inclusion relation between the
corresponding concepts. The extended relation will
contain only instances of the child concept and there can
be many such instances belonging to one parent instance
stored in the parent relation. In the case of inheritance,
identity of the extended relation type is empty and each
parent tuple has maximum one child tuple. Note that if a
relation type defines only identity class (with empty
entity) then it is equivalent to defining a domain (value
type) as it is done in the object-relational model (see
Section 2). In this way we can significantly diminish the
differences between relational and object-oriented

modeling because concepts provide a common mechanism
for modeling simultaneously value domains and relation
types.

4. PARTIAL ORDER — REFERENCES
REVISITED

4.1. References for Multidimensional Modeling

A variety of approaches and techniques have been
proposed for representing multidimensional data [21, 22].
Yet, one of their main problems is that these models are
not intended for transactional processing and can be
viewed more as models of analysis. What is worse, the
analysis scenarios described by such models in great
extent reflect the needs of concrete applications because
defining cubes, dimensions and measures depend on what
an application needs. Therefore, a data model is split into a
transactional part which is application-independent and an
analytical part which is application-oriented. This deeply
rooted incongruity can be termed as a transactional-
analytical impedance mismatch and the need to have two
models for the same data results in numerous problems at
all stages of the enterprise data management system life-
cycle [8, 12, 18]. Currently there exist systems which
serve as common storage for both transactional and
analytical data. Yet, data modeling is still performed
separately, that is, first a transactional model is created
(possibly with a separate conceptual model) and then a
multidimensional analytical model is provided which
relies on the transactional model.

COM eliminates differences between the two types of
modeling so that one and the same model can be used for
both transactional and analytical applications. The idea is
based on the COM order principle which postulates that all
elements in the model are partially ordered. Further,
partial order is represented by references by assuming that
referenced elements are greater than the referencing
element. An important property of partial order is that it
can be interpreted as a multidimensional hierarchical space
where greater elements are interpreted as coordinates with
respect to their lesser elements which are interpreted as
points. For example, if a book element references a
publisher then the book is interpreted as a point while the
publisher is one of its coordinates.

Concepts are also partially ordered by assuming that
field types specify greater concepts. Each concept
describes a multidimensional space with the fields
interpreted as dimensions (it is precisely why concept
fields in COM are referred to as dimensions). For example
(Fig. 1), if books are characterized by publishers then this
means that the Publisher concept is greater than the Book
concept:

CONCEPT Publisher ... // Greater concept

CONCEPT Book // Lesser concept
 ENTITY
 // Type is a greater concept
 Publisher publisher

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

464

According to the multidimensional interpretation, the
Book concept describes points and the Publisher concept
describes coordinates.

Another example is shown in Fig. 4a where concept
BookWriter has two fields of concepts Book and Writer.
The Book concept has two fields referencing one
Publisher and a Date of publishing. (In diagrams, greater
concepts are positioned above their lesser concepts.)
BookWriter is a lesser concept and hence it is positioned
below Book and Writer which are greater concepts.
However, the Book concept has also two fields of type
Date and Publisher which therefore are greater concepts
positioned higher than the Book concept. The
multidimensional space for this schema is shown in
Fig. 4b. BookWriter describes a 2-dimensional space
because it has two greater concepts, Book and Writer.
However, Book is also a 2-dimensional space with its own
two dimensions Date and Publisher. The total model
dimensionality is equal to the number of dimension paths
from bottom to top concept. The model in Fig. 4 has
dimensionality 3 which means that data element of
concept BookWriter can be varied along three dimensions.

This multidimensional interpretation is supported by

operations of projection and de-projection denoted by
right and left arrows, respectively. Projection means
moving up in the partially ordered set to a greater concept.
When applied to a set of elements (interpreted as points) it
returns a set of their coordinates along the specified axis.
A set of elements of some concept is denoted by this
concept name written in parentheses. For example, given a
set of books we can find the related publishers by
projecting along the publisher dimension:

(Book | date > '01.01.2005')
 -> publisher -> (Publisher)

De-projection is the opposite operation which means
moving down to a lesser concept. When applied to a set of
elements (interpreted as coordinates) it returns a set of
points which take them. For example, given a set of

publishers we can de-project them down and find all their
books:

(Publisher | name = 'XYZ')
 <- publisher <- (Book)

These operations serve as a basis for data analysis in
COM. The general idea is that constraints are specified in
some parts of the schema and then propagated to another
part of the schema using a zig-zag dimension paths
composed of projections and de-projections [27, 33]. For
example, we could easily find all writers of a publisher by
applying two de-projections followed by projection:

(Publisher | name = 'XYZ')
 <- publisher <- (Book)
 <- book <- (BookWriter)
 -> writer -> (Writer)

One novel feature of this approach is that we can carry
out inference on data by automatically propagating
constraints to the target [28, 33]. In this case the above
query is written even simpler without specifying a
constraint propagation path:

(Publisher | name = 'XYZ') <-*-> (Writer)

Here <-*-> is inference operator which combines de-
projection and projection.

An advantage of this approach is that it does not add
complexity to the model but rather interprets partial order
in terms of dimensions, points, coordinates and other
notions used in multidimensional data modeling and
analysis. From this point of view, adding a new field to a
concept means adding a new dimension to the model. Data
is thought of as originally existing in a multidimensional
space so that it is always possible to say what coordinates
this element has and how many dimensions this schema
has. One and the same model can be used for modeling
both transactional data and analytical data by eliminating
the transactional-analytical impedance mismatch. COM is
also more flexible than standard OLAP models because it
does not rely on predefined cubes, dimensions and
measures. Any concept can be used as a fact collection for
its greater concepts and as a dimension for its lesser
concepts. The notions of cube, dimensions and measure
are supposed to be specific to concrete analysis scenarios
and therefore are not part of the model.

The partially ordered schema can also be viewed as a
generalization of star and snow-flake schemas where
lesser concepts correspond to fact tables and greater
concepts describe detail tables. The difference is that
COM concepts do not have such predefined roles. A
concept is a fact concept for its greater concepts and it is a
detail concept for its lesser concept.

4.2. References for Modeling Containment

Traditional conceptual modeling distinguishes several
relationships which describe how elements belong to each
other or are composed of other elements: containment,
aggregation/composition and part-of. They are used as
independent semantic units which are not bound to the

Book

book

Date Publisher

publisher

BookWriter

Writer

writer

date

Book
e

Writer Date

Publisher

Figure 4. Partial order interpreted as a multidimensional space

a)

b)

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

465

internal structure of entities defined via attributes.
Therefore, data modeling is broken into two branches:
defining attribute structure of entities and defining
relationships among entities.

COM eliminates this difference by using concept fields
as elementary semantic units which also represent
containment relation. It is achieved by providing a suitable
interpretation of partial order relation rather than by
introducing an additional independent mechanism. Partial
order is interpreted in terms of containment by assuming
that lesser elements are contained (by-reference) in their
greater elements. Conversely, a greater element is a
container for all its lesser elements. This interpretation
means that references (modeled explicitly as identity-
entity couple) are not simply a means of connectivity but
rather are elementary semantic units: to reference an
element means to be included in it. At the level of
concepts, a greater concept is interpreted as a collection of
its lesser concepts. For example, if a Book is characterized
by a Publisher which is the type of one of its fields then
this means that the Publisher is a collection of Books
(Fig. 5). And if each Book is characterized by some
publication Date then one Date element is a collection of
Books (with this publication date).

An important question is what are the differences

between containment described by inclusion relation
(Section 3) and containment described by means of
concept fields. The main difference is that inclusion
relation implements containment by-value where identities
of child elements extend the parent identity. In this case,
elements cannot change their parent because their identity
is defined there. If a parent is deleted then all its children
(extensions) are also deleted and in this sense it is
semantically closer to composition. Therefore, inclusion
should be used for defining permanent containment for
identification purposes. Containment by-reference can be
always changed by changing values stored in fields.

Partial order has also the opposite interpretation where
an element is made up of its greater elements. For
example, a Book is a combination of one Date and one
Publisher. Thus an element is a combination of its greater
elements (where it is a member) and a collection of its
lesser elements (for which it is a set). The opposite
character of these two relations is explicitly expressed via
partial ordering but traditional models do not always
distinguish between these two types of composition or

introduce separate relations for them. It might be also
useful to interpret partial order in logical and algebraic
terms. In terms of logical connectives, an element is a
conjunction of its greater elements and a disjunction of its
lesser elements. In terms of algebraic operations, an
element is a product of its greater elements and a sum of
its lesser elements.

Partial order can also be interpreted via specialization-
generalization relation by assuming that lesser concepts
are more specific than their greater concepts. Note again
that since partial order is implemented via references then
this interpretation means that a referencing element is
more specific than the referenced elements. It is quite
natural because lesser concepts have some additional
fields which make them more specific with respect to the
greater concepts. By removing these additional fields we
can reduce this concept to its greater concept so that the
lesser concept IS-A greater concept. For example, the
following concept is equivalent to its referenced (greater)
concept because it does not define additional fields:

CONCEPT BookVariation // The same as Book
 IDENTITY
 ENTITY
 // Greater concept – more general
 Book book

If we add some new fields then it will be made more
specific:

CONCEPT HeavyBook // More specific
 IDENTITY
 ENTITY
 // More general (greater) concept
 Book book
 DOUBLE weight

Generalization-specialization can also be modeled
using inclusion relations as described in Section 3. The
difference is that inclusion implements it by-value (by
means of extension) and more specific elements cannot
change their more general parent. In contrast, partial order
is implemented by-reference and hence more general
elements can be changed by changing properties of the
more specific elements. Just as with other mechanisms, the
choice of inclusion or partial order is a matter of (good)
design.

4.3. References for Modeling Relationships

Thinking in terms of relationships is one of the most
successful and wide spread data modeling design pattern
implemented as a basic principle in many models
including the Entity Relationship model (ERM) [5] and
fact-oriented models [38]. Relationships are one of the key
data modeling constructs intended as a means of defining
associations among entities, that is, how entities are
related to each other. However, one basic problem here is
that it is not always easy to distinguish between entities
and relationships because both may have properties,
produce instances and even have relationships between
relationships. In addition, relationships may well depend
on the task being solved which makes it difficult to

Figure 5. Partial order interpreted as containment

Book

book

Date Publisher

publisher

BookWriter

Writer

writer

date
Greater concept
describes a container

Lesser concept
describes members

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

466

maintain clear separation between a model and its
applications as well as makes translation to a logical level
ambiguous.

COM provides a solution to this problem by removing
relationships as a separate data modeling construct.
Instead, concepts can be interpreted as relationships with
respect to other concepts. In other words, to be a
relationship is a relative role of concepts in COM. This
interpretation is defined in terms of partial order according
to the following assumption: lesser concepts play a role of
relationships and dependencies between greater concepts.
A general data modeling pattern in this case is that if we
have concepts and need to describe a relationship between
them then it is necessary to introduce a new lesser
concepts. For example (Fig. 6), if Book and Writer are
known to be related (dependent) concepts then we simply
add a new lesser concept BookWriter for describing this
relationship. It is also easy to add a relationship between
existing relationships because existing lesser concepts may
have their own lesser concepts. For example, the Book
concept in Fig. 6 relates two greater concepts Date and
Publisher. However, Book is related with Writer via the
BookWriter relationship. Note also that relationships are
more specific than the concepts they relate.

The main benefit of this approach is that there is only

one main data modeling construct, concept, but we are still
able to represent two phenomena: entities and
relationships. To be an entity or relationship is a role
which is determined by the concept position in the
partially ordered structure. It is analogous to the relative
role of coordinates and points in the multidimensional
interpretation (Section 4.1), and the relative roles of
container and its elements in the containment
interpretation (Section 4.2). Relationships represented by
lesser concepts can be easily used for navigation [26] by
means of a pair of de-projection and projection operations
where we start from some concept, then go down to the
relationship concept (possibly along several path
segments) and finally go up to the target concept. For
example (Fig. 6), if Books and Writers are connected via
the relationship BookWriter (lesser concept) then all books
of some writer can be retrieved as follows:

(Writer | name = 'Smith')
 <- (BookWriter) -> (Book)

Note that the BookWriter concept is between two arrows
which is an indication that it is used as a (most specific)
relationship. However, the Book concept can itself be
treated as a relationship between its greater concepts Date
and Publisher. Therefore it can be used to retrieve all
publishers of the writer:

(Writer | name = 'Smith')
 <- (BookWriter) -> (Book) -> (Publisher)

Another advantage of this approach is that
relationships may have different application-specific
interpretations by retaining the original data structure
unchanged. These application-specific interpretations can
be defined via concept methods. For example, the
BookWriter relationship can be used to get all authors of
one book represented as a hasWriters relationship and
implemented as follows:

CONCEPT Book
 IDENTITY
 CHAR(10) isbn
 ENTITY
 // Can be used as a field
 (Writer) hasWriters() {
 RETURN book <- (BookWriter)
 -> writer -> (Writer)
 }

The method hasWriters returns a collection of Writers
which are found using the BookWriter concept interpreted
as a relationship. First, this query uses de-projection
operation for finding related BookWriter elements.
Second, these elements are projected up to the Writer by
finding all authors of this book. In other applications, we
might need to define this relationship differently or to
define additional relationships. This makes the model
semantically more stable because it is less dependent on
application-specific definitions of relationships.

5. DISCUSSION
Many existing data models are very similar in the way

they represent real world entities. At least, most
conventional models do not dispute that entities should be
in the center of data modeling and by normally agreeing
that they have to be uniquely identified and characterized
by some properties. However, having only entities is not
enough because some means of connectivity are
apparently needed and this is precisely where most models
differ by providing various mechanisms for structuring a
set of entities:

• Attributes are characteristics of entities which are
thought of as slots for containing values or references.
If an attribute contains a reference then it can be used
for connectivity. Almost all models provide this
mechanism except for fact-oriented attribute-free
models like the object-role model [13] and NIAM [38].

• Relationship is an independent data modeling construct
which represents an association among several entities.
This approach was first proposed in the entity-

book

Date Publisher

publisher

Writer

writer

date

Figure 6. Partial order interpreted via relationships

BookWriter

Book

Lesser concept describes
a relationship

Greater concept
describes a related entity

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

467

relationship model [5] and then used in many other
conceptual models.

• Join is a mechanism for finding related elements which
contain the same values of attributes. This approach
was first proposed in the relational model [6] but the
idea of using common values for relating elements has
its roots in logic-based methods. It is not widely used
in conceptual modeling because join is a relatively low
level operation used mostly at the level of queries.

• Link is an element of a binary relation which is an
explicit representation of one connection between two
elements. One formalization of this approach is
provided in a family of knowledge representation
languages called description logic. It is the basis of the
Semantic Web and related standards and models like
RDF.

In this context, COM can be characterized as an
attribute-based model because concepts are defined in
terms of attributes (called dimensions). However,
attributes play much more important role in COM than in
traditional models. First of all, COM does not distinguish
between primitive, non-primitive and reference-valued
attributes. There is only one kind of attributes which
contain an identity representing some entity. Depending
on what concept is used as the attribute type we can get
different particular cases: a primitive or non-primitive
value (entity class of the concept is empty), primitive or
non-primitive reference (entity class of the concept is non-
empty), primitive reference (identity class of the concept is
empty). Note that references in COM are different from
links because reference is a value which provides access to
entity attributes while a link can be viewed as a special
entity which itself has to be somehow represented. In other
words, references are values which are passed by-copy
while links (like RDF triples) are entities which contain
data about the source element (subject), the property
(predicate) and target element (object). COM attributes are
similar to existential facts in object-role modeling. The
difference is that they are modeled using the duality
principle (internal structure of concepts) rather than as
relationships. Importantly, COM does not treat references
as a particular case of relationships. References in COM
are a more basic notion which is embedded in the
definition of concepts. Essentially, COM assumes that it is
not possible to model real world things without modeling
references just because reference definition is part of the
thing definition. When defining a concept we
simultaneously define some reference structure in its
identity class (which can be empty in particular cases).

COM does not have a dedicated construct for
representing domain-specific relationships and therefore it
can be characterized as a relationship-free model.
However, relationships still can be represented in COM by
using concepts. The idea is that to be a relationship is a
role of any concept with respect to its greater concepts.
More specifically, a concept is regarded as a relationship
for its greater concepts. Such a treatment of relationships
allows us to avoid ambiguities when choosing between

attributes and relationships as well as between entities and
relationships. This approach is also more flexible because
we avoid hard assignment of the role of relationship to the
elements of the model so that relationships can participate
in other relationships. COM principally distinguishes
between two major notions and the corresponding
mechanisms: representing things, and relating things.
Things are represented by a value, called identity, the main
function of which is providing access to the represented
entity. Once represented, things can be related by using
other things which store identities of the related elements.
Note that an instance of a relationship is a normal element
with its own identity which also can be related to other
elements. On the other hand, a reference does not have its
own separate identity and it is therefore not a binary
relationship.

If relationships are intended for representing domain-
specific associations between entities then semantic
relations represent general purpose associations. There are
several major semantic relations used in conceptual
modeling and many their variations. The standard way to
use semantic relations is to introduce a separate notation
for each of them and it is actually the basis for
contemporary conceptual modeling. An advantage is that
such a model is independent of the implementation while a
disadvantage is that its translation to a lower level can be
quite ambiguous, requires high expertise, and eventually
can be reduced to creating a completely new model. COM
is different from conventional conceptual models in that it
does not use a separate notation for semantic relations but
rather provides an additional semantic interpretation to its
basic constructs. The main advantage is that such a model
is simpler because it can be used for both conceptual
design and as a logical data model. However, this
approach is more sensitive to the quality of the design
because its basic constructs have a significant semantic
load. For example, to assign a value to an attribute means
to include this element to some set and to declare an
attribute type means to specify an axis with coordinates for
this concept instances.

One novel feature of COM is that it provides two
versions for its main semantic relations. It is a
consequence of having two major mechanisms for
describing new elements:

• Extension is described by inclusion relation and allows
for including new elements by-value

• Combination is described by concepts and allows for
including a new element into several combined
elements by-reference

For example, there are two ways to build a more
specific element: either extending the base element (by
including this concept into the super concept) or
referencing the base element (by defining a new concept
field with the type of the super concept). Semantically, to
extend an element is equivalent to referencing it. The
differences are in properties and uses of these two
mechanisms. Extension is performed by-value which
means that it is applied to identities (which are values) and

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

468

identities cannot change their parent. In contrast,
combination is performed by-reference so that it is always
possible to change the more general element (by setting
the attribute value). It can be used to model multiple
inheritance because each concept field actually defines a
base element.

COM can be characterized as a relationship-free and
attributed-based model as opposed to attribute-free models
which rely on only relationships as a sole data modeling
construct. Attribute-free models capture data semantics in
terms of atomic (elementary or existential) fact types and
represent them as relationships. Prime examples of the
fact-oriented approaches are the Object-Role Model
(ORM) [13], Natural language Information Analysis
Method (NIAM) [38] and the Predicator Set Model (PSM)
[14]. When compared to the fact-oriented models, COM
makes a fundamental distinction between references and
(binary) relationships. Although mathematically they are
equivalent, they are treated differently from the data
modeling point of view. More specifically, references are
values which are able to provide access to other values
(entity attributes). They do not have their own references
and can be represented only directly by copying their
contents. References always have a direction. In contrast,
relationships do not have a direction and are not treated as
a way to indirectly represent another entity. (In fact, a
value can play two roles simultaneously: it can represent
some entity and it can relate several elements stored in its
attributes.) One difficulty with having only relationships is
that we cannot say how they are represented. Indeed, if a
relationship has three roles then how they are
implemented? If these three roles are not implemented via
(binary) relationships then what they are? In terms of
diagrams, what are the lines representing roles if not
binary relationships? Probably, the only answer is that we
do assume the existence of some kind of primitive
references but do not explicitly introduce them into the
model because they are not supposed to be modeled. COM
solves this difficulty by explicitly fixing a special status of
references which are not relationships but rather provide a
basic way to represent things and also can be viewed as
roles. Yet, these references can be and should be modeled
by describing complex domain-specific identities and
roles. On the other hand, COM completely removes
relationships from the model by using concepts instead of
them. Therefore a diagram in COM has only two
elements: lines representing references (or roles) and
boxes representing concepts treated as either entities or
relationships.

6. CONCLUSION
In this paper we discussed the principles of COM from

the point of view of type modeling and conceptual
modeling. These three principles are summarized below.

Duality. We argue that a data type should be broken
into two equally important parts describing identities and
entities. A model is then split into two orthogonal
branches – identity modeling and entity modeling – by
producing a nice yin-yang style of balance and symmetry

between two sides of one reality. This allows us to make
identities integral part of the model so that any entity must
have an associated identity. A model can consist of only
identities in the case it is intended for describing value
types or an address space. Or it can describe only entities
in the case it is aimed at modeling what is passed by-
reference. In the general case, however, any type has both
constituents and one can freely vary between by-value and
by-reference semantics. The duality principle provides a
novel view on the notion of reference because now a type
is used to describe both parts: a reference and a referent.
Another immediate benefit is a generalization and
simplification of the type system the in relational and
object-relational models because there is only one kind of
domain without the necessity to distinguish between value
domains and relations.

Inclusion. We also argue that it is enough to have one
inclusion hierarchy to model hierarchical address spaces
(where elements exist), containment (by-value) and
inheritance (in a generalized form). This leads to an
important principle: to include in a set means to inherit
from this set and to be more specific than this set.
Inclusion is also equivalent to identification with respect
to the parent set which is implemented by extending the
parent address. This approach also allows us to simplify
data modeling because several mechanisms are described
via one relation. In particular, it is possible to use
inclusion as a conventional extension operator to add new
properties and produce more specific data types. But this
same relation is used to model hierarchical address spaces
and containers. Another positive consequence of the
inclusion principle is that we eliminate the asymmetry
between classes (existing in hierarchy) and their instances
(existing in flat space).

Partial order. And the third main point is that partial
order relation can describe many existing mechanisms and
semantic relationships:

• object-attribute-value - object is a lesser element and
value is a greater element

• multidimensional space - point is a lesser element and
coordinate is a greater element

• containment - greater elements are collections for
lesser elements

• relationships - lesser elements relate greater elements

Data modeling is then reduced to partially ordering a set of
concepts while other properties are derived from this
structure. Importantly, the role of reference is revisited
because they serve as elementary semantic units rather
than a means of connectivity in a graph. In other words,
the use of references is not limited by the possibility to
retrieve elements and navigate through the graph structure.
In COM, to reference an element means to specify a more
general element, a coordinate for this element, a container
for this element or a value for some attribute.

This work is a step towards developing a unified model
which provides equal support for transactional, analytical

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

469

and conceptual views on data. COM takes a holistic view
on data by unifying a wide range of existing data modeling
approaches and reducing them to only three major
principles. The main benefit of these principles is that it
significantly simplifies data modeling by eliminating or
reducing many incompatibilities which stem from a large
number of diverse data modeling techniques and patterns.

REFERENCES
[1] M. Atkinson, P. Buneman. Types and Persistence in
Database Programming Languages. ACM Computing
Surveys (CSUR), 19(2), 105–70, 1987.

[2] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich,
D. Maier, S. Zdonik. The Object-Oriented Database
System Manifesto. In Proc. 1st Int. Conf. on Deductive
and Object-Oriented Databases, North Holland, 1990.

[3] F. Bancilhon. Object databases. ACM Computing
Surveys (CSUR), 28(1), 137–140, 1996.

[4] C. Chambers, D. Ungar, B. Chang, U. Hölzle. Parents
are Shared Parts of Objects: Inheritance and Encapsulation
in Self. Lisp and Symbolic Computation, 4(3), 207–222,
1991.

[5] P.P. Chen. The Entity-Relationship Model - Toward a
Unified View of Data. ACM Transactions on Database
Systems, 1(1), 9–36, 1976.

[6] E. Codd. A Relational Model for Large Shared Data
Banks. Communications of the ACM, 13(6), 377–387,
1970.

[7] E.F. Codd. Extending the database relational model to
capture more meaning. ACM Transactions on Database
Systems (TODS), 4(4), 397–434, 1979.

[8] S.S. Conn. OLTP and OLAP Data Integration: A
Review of Feasible Implementation Methods and
Architectures for Real Time Data Analysis. In Proc.
SoutheastCon, 515–520, 2005.

[9] G.P. Copeland, D. Maier. Making Smalltalk a
Database System. ACM SIGMOD Record, 14(2), 316–325,
1984.

[10] K.R. Dittrich. Object-oriented database systems: the
notions and the issues. In Proc. Intl. Workshop on Object-
Oriented Database Systems, 2–4, 1986.

[11] F. Eliassen, R. Karlsen. Interoperability and object
identity. ACM SIGMOD Record, 20(4), 25–29, 1991.

[12] R. Finkelstein. MDD: Database reaches the next
dimension. Database Programming and Design, 27–38,
April 1995.

[13] T.A. Halpin. Object-Role Modeling: Principles and
Benefits. IJISMD, 1(1), 33–57, 2010.

[14] A. ter Hofstede, H. Proper, T. van der Weide. Formal
definition of a conceptual language for the description and
manipulation of information models. Information Systems,
18(7), 489–523, 1993.

[15] W. Kent. A Rigorous Model of Object References,
Identity and Existence. Journal of Object-Oriented
Programming, 4(3), 28–38, 1991.

[16] S.N. Khoshafian, G.P. Copeland. Object identity. In
Proc. OOPSLA’86, ACM SIGPLAN Notices, 21(11),
406–416, 1986.

[17] W. Kim, J.F. Garza, N. Ballou, D. Woelk.
Architecture of the ORION Next-Generation Database
System. TKDE, 2(1), 1990.

[18] R. Kimball, K. Strehlo. What’s wrong with SQL.
Datamation, June 1994.

[19] H. Lieberman. Using prototypical objects to
implement shared behavior in object-oriented systems. In
Proc. OOPSLA’86, ACM SIGPLAN Notices, 21(11),
214–223, 1986.

[20] J. Pardillo, J.-N. Mazón, J. Trujillo. Bridging the
semantic gap in OLAP models: platform independent
queries. In Proc. DOLAP '08, 89–96, 2008.

[21] T.B. Pedersen, C.S. Jensen. Multidimensional
database technology, Computer, 34(12), 40–46, 2001.

[22] T.B. Pedersen. Multidimensional Modeling.
Encyclopedia of Database Systems. L. Liu, M.T. Özsu
(Eds.). Springer, NY., 1777–1784, 2009.

[23] D. Raymond. Partial order databases. Ph.D. Thesis,
University of Waterloo, Canada, 1996.

[24] S. Rizzi, A. Abelló, J. Lechtenbörger, J. Trujillo.
Research in data warehouse modeling and design: dead or
alive? In Proc. DOLAP’06, 3–10, 2006.

[25] A. Savinov. Concept as a generalization of class and
principles of the concept-oriented programming.
Computer Science Journal of Moldova, 13(3), 292–335,
2005.

[26] A. Savinov. Logical Navigation in the Concept-
Oriented Data Model. Journal of Conceptual Modeling,
Issue 36, 2005.

[27] A. Savinov. Grouping and Aggregation in the
Concept-Oriented Data Model. In Proc. ACM Symposium
on Applied Computing (SAC’06), 482–486, 2006.

[28] A. Savinov. Query by Constraint Propagation in the
Concept-Oriented Data Model. Computer Science Journal
of Moldova, 14(2), 219–238, 2006.

[29] A. Savinov. Concepts and Concept-Oriented
Programming. Journal of Object Technology, 7(3), 91–
106, 2008.

[30] A. Savinov. Concept-Oriented Programming. E-print:
arXiv:0806.4746, 2008.

[31] A. Savinov. Concept-Oriented Programming, In:
Encyclopedia of Information Science and Technology, 2nd
Edition, Editor: Mehdi Khosrow-Pour, 672–680, IGI
Global, 2009.

[32] A. Savinov. Concept-Oriented Model. In V.E.
Ferraggine, J.H. Doorn, & L.C. Rivero (Eds.), Handbook

VOL. 3, NO. 4, April 2012 ISSN 2079-8407

Journal of Emerging Trends in Computing and Information Sciences
©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

470

of Research on Innovations in Database Technologies and
Applications: Current and Future Trends, IGI Global,
171–180, 2009.

[33] A. Savinov. Concept-Oriented Query Language for
Data Modeling and Analysis. In: Advanced Database
Query Systems: Techniques, Applications and
Technologies. L. Yan and Z. Ma (Eds.), 85–101, 2010.

[34] A. Savinov. Concept-Oriented Model: Extending
Objects with Identity, Hierarchies and Semantics,
Computer Science Journal of Moldova, 19(3), 254–287,
2011.

[35] L.A. Stein. Delegation Is Inheritance. In Proc.
OOPSLA’87, ACM SIGPLAN Notices, 22(12), 138–146,
1987.

[36] M. Stonebraker, L. Rowe, B. Lindsay, J. Gray,
M. Carey, M. Brodie, P. Bernstein, D. Beech. Third
generation database system manifesto. ACM SIGMOD
Rec., 19(3), 1990,

[37] M. Stonebraker. Object-Relational DBMSs: The Next
Great Wave. Morgan Kaufmann, San Mateo, CA, 1995.

[38] G.M.A. Verheijen, J. van Bekkum. NIAM: An
Information Analysis Method. Information System Design
Methodologies: A Comparative Review. T.W. Olle,
H.G. Sol and A.A.V. Stuart. North-Holland, Amsterdam,
537–590, 1982.

[39] R. Wieringa, W. de Jonge. Object Identifiers, Keys,
and Surrogates - Object Identifiers Revisited. Theory and
Practice of Object Systems, 1(2), 101–114, 1995.

	INTRODUCTION
	Motivation and Major Goals
	Model Structure and Principles

	DUALITY — CLASSES REVISITED
	By-Value or By-Reference? Both
	Modeling References

	INCLUSION — HIERARCHIES REVISITED
	Modeling Hierarchical Identities and Value Extension
	Modeling Hierarchical Entities and Entity Extension

	PARTIAL ORDER — REFERENCES REVISITED
	References for Multidimensional Modeling
	References for Modeling Containment
	References for Modeling Relationships

	DISCUSSION
	CONCLUSION
	REFERENCES

