
VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

612

Cost Estimation: A Survey of Well-known Historic Cost Estimation Techniques
1 Syed Ali Abbas, 2 Xiaofeng Liao, 3 Aqeel Ur Rehman, 4 Afshan Azam, 5 M.I. Abdullah

1 College of Computer Science, Chongqing University, PR China
2 Professor, College of Computer Science, Chongqing University, PR China
3 College of Computer Science, Chongqing University, PR China
4

1. INTRODUCTION
 Software Cost Estimation is an important, essential
and a difficult task since the foundation of computer was laid
in 1940’s. As the variation occurred in software size from
small to medium or large based, the need for precision or
correctness in software cost estimation with understanding
has also grown [1][2].

 Understanding Software cost is important because
the overall impact of the costs on any development project is
large. The rate of the development of new software is much
less than the abilities to develop new software [23]. While
keeping resources and abilities in mind, the development rate
can be accelerated, but this may affect the quality attributes of
the developing software project. However, by means of
modern cost effective techniques, the reduction in
development costs and improved software quality can be
achieved [2].

 We leave the issue of reducing cost and enhancing
the quality to some other paper, here we come back to the
actual topic that is “cost estimation” which refers to the
process of estimating the cost and time required for the
development of software [13].

 The author in [13] suggested estimation as the
predictions of the likely amount of effort, time and staffing
levels required to build the software system.

College of Economy and Bussiness Administration, Chongqing University PR China

ABSTRACT
Number of contributors has made their efforts to produce different modeling techniques in last four decades. This paper is about
the comprehensive descriptive exploration of the models that were presented in the early stages of the software estimation field
and covers most of the famous available and practiced parametric models and few non-parametric techniques. All widespread
models discussed at one place will give our readers a prospect to comprehend the pros and cons, similarities and the differences
among these models

Key Words: Software cost Estimation models; Effort Prediction; analogy; software Metrics; line of code.

 In other words it is depicted as the process of
forecasting or estimating the effort required to develop a
software system [4]. Software cost estimation is vital in the
perspective of software engineering as a method to obtain
effort, cost and time of a project, as a result helping better
decision making about the feasibility or viability of the
project [15]. Estimating cost with accuracy allows the project

management to effectively organize the project tasks and
make considerable economical and strategic planning [13].
However, cost estimation is not a simple process as it appears
to be. Several known or unknown factors influence the
process of estimation. For example imprecise and drifting
requirements, newness (complete project or technology or
both), trying to match the estimates with available time and
budgets, impractical or heavy change in plan during the
execution of the project, Software type, Programming
Languages, teams capability and the stage during the
development when you make the estimates. Barry Boehm in
[5] has emphasized that the uncertainty is greatest at the
beginning of a project and decreases as the project progresses.
As the project tasks are completed by the team, the rate of
change of a system’s estimated final size and the uncertainty
about a system’s estimated final size should approach zero
[6]. Another worthy factor is software size that impacts the
process of cost estimation. The precision of size estimation
directly impacts the accuracy of cost estimation [55].

 In the competitive environment of software industry,
the victorious organization will be that one, which has the
capability to develop and deliver the software product to the
customers or end users with in the promised period of time
while staying in financial budgetary boundaries. Hence,
proper estimates are the drivers which may steer to achieve
these milestones. In other words it may be said that it is quiet
necessary to understand and control the cost by proper
estimation for the proper management, enhanced quality and
better understanding of the software project [2].

 Estimation, as being the sub phase of software
engineering, needs to be dealt in some predefined, preplanned
and in well mannered way. So, rather making wild guesses,
Estimation should be made by practicing some good pre-
defined method either theoretical based on judgments or

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

613

mathematical approach supported with proven formulas and
quantitative software metrics to make estimation
measurements easy and trustworthy up to some extent.

In past, contributors have made their efforts to
propose different modeling techniques, for example, Farr and
Zagorski model (1965), Aron model (1969), Walston and
Felix model (1970), Wolverton model (1974), Kustanowitz
model (1977),Putnam SLIM(1977), GRC model (1974),
Doty model (1977), Jensen model (1979), Bailey and Basili
Model(1981), and so on.

 This paper is the brief introduction of software
metrics, a comprehensive descriptive exploration of the
models that were presented in the early stages of the software
estimation field and covers most of the famous available and
practiced. Some theoretical approaches based on intuitions of
expert personals and the evolutions of Fuzzy logic and neural
networks in cost estimation are partially discussed in the
paper. All widespread models discussed at one place will give
our readers an option to comprehend the pros and cons,
similarities and the differences among these models. The rest
of the paper is distributed in following sections.

Section 2 includes the understanding of the software
metrics. Section 3 & 4 include the algorithmic models and the
non algorithmic modeling techniques respectively. In section
5 we have presented future work and finally in section 6 we
concluded our discussion followed by Appendixes and
references.

2. SOFTWARE METRICS

 Many researchers have been made to identify
different methods or techniques which may provide a good
way to deal with the size estimation. Results of these
researches provided a number of techniques, professionally
speaking called software Metrics. Now days, Quantitative
measure is necessary in every field of science and in
computer sciences size metrics is a way to conduct
quantifiable measurements, which if used properly makes cost
estimation process much easier and trustworthy. A number of
software metrics are proposed but following are the few
which are commonly known and being practiced by different
organizations.

2.1.1 Line of Code

 According to the authors in [62] and further
elaborated by [55], “LOC is the number of lines of the
delivered source code of the software, excluding comments
and blank lines”. The lines of code measures are the most
traditional measures used to quantify software complexity and
for estimating software development effort. LOC is the oldest

of size estimation techniques, however productivity through
LOC is not considered to be a good source to generate
estimates. The reason for considering

Function points can be computed early in the
development cycle hence raising its worthiness as compared
to other sizing metrics. The function point metric is perhaps

LOC old-fashioned is
its language dependency. It is obvious that projects developed
by the use of different programming languages even to
provide the same function need different varied time and
effort because of the differences between High level and low
level languages [57]. Another problem with LOC is any
agreed classification for a line of code. In the presence of a
number of languages, there could be a lot of variations in the
line counting method. Author in [55] has discussed 11
significant variations in line counting method.

Even in the presence of these drawbacks, LOC was
practiced by different organizations and a number of software
estimation models proposed in early days (CoCoMo, Putnam,
Walston & Felix…) were the function of line of code [83].

2.1.2 Function Point Analysis

LOC is programming language dependent and
obviously the productivity of LOC is effected significantly
with the development of the language [57][75][69]. In such
circumstances the need of Function point is emerged which
measures the size of a system from its functionality and
usability [10]. Pressman in [79] suggests that “Function points
are derived using an empirical relationship based on
countable measures of software’s information domain and
assessment of software complexity”. Function points were
introduced by Albrecht [76] with the objective “…to count
the numbers of external user inputs, inquiries, outputs and
master files to be delivered … these factors are manifestations
of any application”. These factors include all functions in any
given application and all these factors are counted separately
and weighted by numbers reflecting the relative value of the
function and these weighted counts are then summed up to
yield Function point or unadjusted function points (term used
by Albrecht) [77][75]. 2

The expression used for function points calculation is:

Function points delivered= Unadjusted function
points * Complexity adjustment factor

The complexity adjustment factor is equal to (0.65+
0.01(N)) where N is the sum of degree of influence of 14
factors discussed in [79] and each factor takes the value
ranges from 0(very low/none) to 5(very high). This value of N
is used to develop adjustment factor ranging from 0.65 to 1.35
hence providing the adjustment of +/- 35 % [75].

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

614

one of the most successful and fast growing size metric for
measuring size as a substitute to LOC [80].

2.1.3 Software Science (Halstead’s Equations)

In previous sections, it is mentioned that writing
code can be easy or difficult if we talk in the perspective of
low level and high level language. So LOC estimation does
not remain effective, and solution to eradicate this
ineffectiveness is to give more weight to lines that are more
complex. This thought is developed by Maurice Halstead in
his metric called Software Science [82]. In order to estimate
the code length, volume, complexity and effort, software
science suggests the use of operators and operands [80].

 According to Halstead Code length is used to
measure the source code program length and Volume
corresponds to the amount of required storage space and both
are defined in [55] as:

Program length(N) = N1 + N2
Volume (V) = N log (n1+n2)

Where
 n1 = number of distinct operators in a program
n2 = number of distinct operands in a program
N1 = number of occurrences of operators in a
program
N2 = number of occurrences of operands in a
program

Following equations are used for computing estimation [80].

N = Observed Program Length = N1 + N 2
N = Estimated Program Length
= n1 (log2 (n,))+ n2 (log2 (n2))
n = Program Vocabulary = n1 + n2
V = Program Volume = N(log 2 (n))
D = Program Difficulty = (n,/2)/(N 2 /n.)
L = Program Level = 1/D
E = Effort = V/1

 This work by Halstead remained prominent in the
industry for small period of time. Halstead equations can not
be proven successfully a better approach as compared to LOC
[80]. The authors in [78] have investigated software science
in detail and questioned the effectiveness of software science.
They stated “…The failure to state the relationships
statistically, which would permit description of the dispersion,
seems to be a serious weakness both theoretically…and
practically. … The standard of experimental design is
frequently very poor”. Due to the disagreements [78], the
software science has lost its support in recent years.

Few other recently proposed metrics are Weighted
Micro Function Points (WMFP) uses a parser to understand
the source code breaking it down into micro functions and

derive several code complexity and volume metrics, which
are then dynamically interpolated into a final effort score
[66]. Feature Point [23] and full function points [19] are other
two extensions of Function point. Object-oriented (OO)
metrics that is based on the number and complexity of the
object like screen, reports components etc [55] is evolving
gradually.

Up to now, we have seen that cost estimation is a

way to predict the resources required for any software project,
influenced by a number of factors. However, this influence
can be mitigated by utilizing development tools, by following
an appropriate process, establishment and management of a
good measurement technique. Avoiding the redundant
activities is another good practice which may affect the
estimation process. Researches have shown that lessening the
work by eradicating un-necessary activities can raise the
output to 80% [51]. At this point it may be said that a good
measurement or estimate does not guarantee the successful
completion of the project but it at least provides a way to
manage the resources and control the costs. It is also worthy
to mention that one metric probably alone is not enough to
determine any information about an application under
development. Several metrics may be used in process cycle to
increase insight into improvements during a software
development.

Review

 Software cost estimation is important for project
activities like planning, risk analysis, budgeting etc and if the
project developing organization is lacking in the exercise of
some reasonable estimation technique, then it means their
projects are at risk [1]. Several models have been proposed in
last thirty years; some of them survived because of their
effectiveness, other was limited to organizational used, hence
not practiced a lot. This section is an effort to review most of
the famous estimation models which may provide an insight
to readers to compare their pros and cons or to make
judgment that in any particular scenario which model may be
adopted to conduct estimation.

The models, which we will review in upcoming
sections, can be classified in many ways and from past
literature different approaches, categories and techniques for
estimation modeling is identified. Authors in [74] categorized
the estimation models into Sparse Data Methods which can
be applied without depending upon historical data and Many
Data Methods that are either function or arbitrary function
models. Basili [41] has categorized these models into
following four parts: (i) Static single variable model (ii) Static
multivariable models (iii) Dynamic multivariable models and
(iv)Theoretical models. Another classification is made by
Kitchenham [36] is popularly known as Constraint models
which are the set of the models specify the relationship

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

615

x,j=0

6

between different cost parameters (e.g., cocomo, Putnam,
Jensen…). Boehm and others in [73] define six major
categories for estimation models. (i) Model based, (ii)
expertise based, (iii) case based, (iv)Dynamic based, (v)
regression based and (vi) composite based. In [55] authors
have distributed models into two divisions. Algorithmic (also
known as parametric models) generate a cost estimate by the
means of one or more mathematical algorithms using
variables considered to be the major cost drivers. These
models estimate effort or cost based mainly on the
Hardware/Software size, and other productivity factors known
as cost driver attributes [65] [72]. At another place [71]
suggested that algorithmic models are dependant upon the
statistical analysis of historical data. On the other hand Non-
Algorithmic category is an approach that is soft computing
based when fuzzy logic, Neural networks and genetic
algorithms are involved [68]. Techniques like Delphi, analogy
and expert judgment are the non algorithmic techniques
where human experience is used to make estimates by
comparisons of previous work or educated guessing [70] [73].

From the wide-ranging review of the literature, we

have categorized the models of our discussion in the two
broad categories, Non Algorithmic and Algorithmic which is
further broken down in Discrete models, Power Function
models, Linear/non linear models, Multiplicative models and
others. Figure I include an overview of models in their
respective categories [60][73][67][55][72][74].

The following section is a brief overview of
Algorithmic models given in Figure I.

3. ALGORITHMIC MODELS

3.1 Linear / Non Linear Models

 Linear models rely upon derived equations from the
test data; however during software development a linear
model works very well because of non-linear interactions [5].
Non linear models usually uses linear estimation iteratively
applied to linear approximations until coefficients converge.
The models in these two categories are

3.1.1 Bailey & Basili

 This model is based on the early work of Walston
and Felix (3.3.1) and was proposed to be used to express the
size of the project with some measures like Line of code,
executable statement, machine instructions, number of
modules and a base line equation to relate this size to effort
[3]. This model has also suggested an approach that is related
with the project’s deviation; however we will focus only upon
the effort estimation proposed by Bailey & Basili.

It was discovered by authors that rather considering
only the total lines or only new lines to determine the size of a
project; a better way is to use an algorithm to combine these
sizes into one measure. By keeping this in mind they
suggested that a baseline relationship of lower standard error
can be derived by computing the effective size in lines to be
equal to total number of new lines plus 20% of old lines used
in the project [3]. They called this new size measure
developed lines DL and they adopted same approach to
measure developed modules. The equation provided by
authors with 1.25 standard error estimate, further discussed at
[72], is given as:

Effort = 0.73 * DL 1.16

 + 3.5

3.1.2 Farr & Zagorski

 Probably this is the earliest known model proposed
around 1965 at ICC symposium on economics of automatic
data processing [11]. This linear model proposed productivity
factors i-e delivered statements, size of data base etc that are
determined by regression analysis of three linear equations
resulting into the effort required in man months to complete
the system. [11][58][4]. Coefficients and Cost Drivers in the
Farr-Zagorski Study with their values are given at table VI
(Appendix B). The equation that can be used to estimate
effort in MM and cost is given as [58].

MM = ∑ x i j i

Total Cost=

Nelson model is a linear model that was developed
by Nelson at System Development Corporation (SDC) in
1966 which was refined by him in 1970. During the
development of this model, Nelson studied 169 databases of
different projects. These projects were selected from different
field’s i.e Business, Scientific, Computer software and other.
Initially Nelson identified 104 attributes and later only most
significant 14 cost drivers (Table V, appendix B) were used in
estimation process [49]. In his work, Nelson proposed
equations for estimating manpower, computer usage, and
months elapsed. These equations were proposed only for the
Computer Program Design, Code and Test activity. For the
total sample of 169 projects, Nelson has computed Total Man
months, Total computer Hours and Total Elapsed time as
follows:

 MM (Labor rate /12)

Authors in [45] emphasized that Linear models are
not proven to be satisfactory for effort estimation however,
the results computed by Mohanty[58] have proved that Farr
and Zagorski model’s results are better than Naval Air
Development Center model and some others.

 3.1.3 Nelson Model

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

616

11

c,j=0

14

i,j=1

Total Man month = -33.63 + 9.15 X3 + 10.73 X8
+.51 X26 + .46 X30 + .40 X41 + 7.28 X42 - 21.45 X48.1 +
13.53 X48.5 +12.35 X51 + 58.82 X53 + 30.61 X56 + 29.55
X72 + .54 X75 - 25.20X76

Total Computer Hours = +80.0 + 105 X8 + 2.70 X35 +
21.2 X37 + .158 X46 + 10.8 X47..1 -6.85 X47.3 + 292 X48.3 -
63.3 X52 + 266 X56 + 3.59 X57 - 3.95 X64 + 240 X72 - 173
X76

Total Months Elapsed = 1.31 + 1.31 X8 + 0.020 X19
+.845 X37 + 2.37 X40 + .037 X41 + .098 X47.1 - .079 X47.3
+ .860 X48.3 + 2.05 X51 - 2.65 X65 + 3.63 X72 + .039 X75 -
1.86 X

76

“+” sign in above equations show that the resource varies
directly with the variable. If the variable is increased then the
amount of resource will also increase. On the other hand the
“-” sign represents that a resource varies inversely with
variable [49]. “X” represents the dependent variables or
factors that Nelson identified in his statistical experiments
that finally led to the numeric values and equations. Nelson
also applied these equations on the subset of total sample i-e
to obtain total man months, total computer hours and total
elapsed time for Business, Scientific, Computer software.
Interested readers may see [49], page 80-87.
In our next sections we will use Nelson equation for
computing purpose. In order to avoid the lengthy equation we
adopt a general form to represent Nelson model as follows so
that we may use it with ease.

 Effort = Constant value + ∑ cix

i

 Another name that is more in practice for Nelson
model is System Development Corporation model
SDC[58][59]. However, the number of predictors used in [58]
and [59] are 11 and in general form the equation may be
given as.

MM = ∑ciji

Cost = MM (Labor rate per year/12)

In later sections we have used Mohanty
[58] data for analysis. So for the sake of clarity, we
keep both parametric equations.

3.1.4 General Research Corporation

 This non-linear organizational model is developed by
General Research Corporation (GRC) in 1976 to compute
cost as non linear function of the delivered instructions
[11][58]. GRC model estimates the development time,

computer time during development and documentation time.
An estimating equation is provided for analysis, design code
and test phases and through this equation the effort for any
phase is accomplished by using object instructions and
hardware constraint factor [59]. The gernal form of GRC to
estimate cost is provided by Mohanty[58] as:

Software Cost = 0.232(LOC)

Boeing model was a good effort in the sense as it
was individually computed the environmental factors
effecting the development phases. However, it is not widely
practiced because no method for estimating life cycle, design
or schedule cost was proposed by the model and the
readjustments in user’s environments are probably not
possible.

1.43

3.2. Discrete Models

These models use a tabular form that relates the effort,
duration, difficulty and other cost factors [55]. Following
models are grouped in this category.

3.2.1 Boeing Model [59]

This model was developed by Boeing computer
services in 1976 under the contract to US air force. The model
has provided the estimates of total person-months of
development, person months of development during each
phase and estimates of computer time. The inputs to the
model were (i) Number of lines of deliverable source code (ii)
percentage of statements (iii)the six defined phases and (iv)
the 8 environmental factors and each factor has six associated
weight that are used to adjust and the environmental factors.
(Appendix A)

The model estimates development effort for each of

the six phases and amount of computer time required for
development. Development time estimate is computed
through percentages of statements and number of lines of
code estimate. The estimate is then adjusted by environmental
factors to have final estimate

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

617

Figure I: Algorithmic Models

Algorithmic (Parametric) Models

Jensen Bailli
& Basili

GRCM Kustano-
witz

Price-S

Scheneider

Walston &
Felix

Doty

TRW (Scep)

Boeing

Wolverton

Aron

Farr
&

Zagorski

CoCoMO

Putnam

Power Function Models Discrete Models Multiplicative Models Linear Models

Walston &

Felix

Doty

Nelson

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

618

m=1 K

K

3.2.2 Aron Model

 Aron model was proposed by J.D. Aron that attempts
to provide pragmatic determined productivity rates. Aron's
model served as a basis for productivity rate estimation in
software estimation field [54]. Aron model is a quantitative
method of estimating manpower resources for large
programming jobs. This method is based on the available
historical data on productivity rate of programmers and later
this data is used to adjust other non programming attributes of
the system.

Aron provided four estimating methods in his paper
namely Experience, Quantitative, Constraint, Units of Work
[63][58].

Experience method depends upon experience with

similar jobs in same environments hence providing a way for
estimators to compare the system with previously completed
ones. Quantitative method described by Aron[63] as
“…programmer productivity in terms of the number of
deliverable instructions produced per unit of time by an
average programmer.” Constraint method is an educated
guess and units of work method is way to break the larger unit
into the smaller units for which the cost is estimated with the
help of available data from same historical projects. In Aron
model the tasks were divided into three categories i-e easy,
medium and hard. From the figures he used table
IV(Appendix B), suggested that for big systems use an
average productivity rate of 20 assembly language source
statements per day for easy programs, 10 per day for medium
programs, and 5 per day for hard[54].

Aron used following expression to calculate the

man-months for any individual task. The total effort in man
months is the sum of all individual man-months for each task.

Man Months = (Deliverable Instructions)/ (Instruction
per Man Month)

Aron model is considered to be the pioneer of
quantitative modeling in estimation as it has provided a good
guide line for estimating man power for large systems but
“…It is not being presented as a precise method and, in fact, it
is not as good as an estimate based on sound experience. But
it is offered as an aid to estimators working in unfamiliar
areas and as a verification of estimates obtained by other
methods.”[63]

3.2.3 Wolverton(TRW) Model

Wolverton model was an algorithm based estimation
model relied on the assumption that costs is proportional to
the number of instructions. The different values that are

related to the routine category and complexity level are used
to convert routine size to costs. In order to divide resources
among the 25 activities (Appendix B) for each of the seven
phases of life cycle, a 25 x 7 matrix was used to allocate the
total cost [20]. The degree of complexity or difficulty was
classified as easy, medium or hard on the basis of its newness
or already gone through in some previous project. Total
development cost may be obtained by multiplying the cost per
instruction of single routine to number of object instruction
and finally summing up individual results as a single effort
value. The equation used for computing effort is given as [50]

Cost = ∑ Effort1(m)

Wolverton model also suggested the use of effort
adjustment multipliers. A total of six multipliers 1) control,
(2) input/output, (3) pre/post processor, (4) algorithm, (5)
data management, and (6) time critical were used with the
complexity scales proposed as old-easy, old-medium, old-
hard, new-easy, new-medium, and new-hard[50].

Wolverton model was specifically proposed for the

organizational tasks only applicable for the TRW database,
that’s why it was not being widely practiced in the software
industry.

3.3. Multiplicative Models

 These models use the coefficient values that are best

for the completed project data[87]. Following models are
considered to be multiplicative model.

3.3.1 Walston & Felix Model

 This model was developed by Walston and Felix at
IBM Federal Systems to measure the rate of production of
lines of code. The model estimates the total man-months of
effort as a function of the line of code to be produced [58] and
also estimates pages of documentation, duration of
development in calendar months, average staff size and cost
of development with respect to computer time [59].

The model was a result of statistical analysis of

historical data derived from a database of 60 different projects
that ranged from “…4,000 to 467,000 LOC, and from 12 to
11,758 person-month effort… 28 high-level languages, and
66 computer systems and were classified as small less-
complex, medium less-complex, medium complex, and large
complex systems”[81].

Based on their collected data they investigated 68

variables that may affect the productivity measures. Out of
those 68 variables, they selected most significant 29 factors
that are associated with productivity. These factors were used
to calculate the productivity index, which was computed in a

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

619

linearly regression fashion to obtain an equation for
estimating productivity of new projects [81][31].

Out of the nine equations used by this model, one

relationship of the form E = aL b was used to estimate effort,
where L is the number of lines of code, in thousands, and E is
the total effort required in person-months. The equation
obtained after deriving values for parameters a and b was
[11][31].

 E = 5.2 L 0.91

This model has not provided a distinction between

comments and program instructions, consequently the effort
for both was assumed to be same. Limited availability of this
model has restricted its use or recalibrations across the
organizations. The reliability of this model is questioned by
different researchers and due to other weaknesses this model
is probably not in practice any more.

3.3.2 Doty Model [89]

Doty associates with US air force sponsor ship
incorporated this manual model in 1976/77 [11] [59]. This
model is used to compute total person-months of development
effort, development cost, and time, overhead cost of computer
time, documentation and travel. Four application areas (i)
command and control (ii) scientific (iii) business (iv) and
utility are covered with the help of different equations. 14
environmental factors are also proposed in this model [table
III in [72]], however their use is optional [59]. The expression
used to compute effort in man Months MM for any gernal
application is discussed as [72].

MM = 5.288 (KDSI)l 047
for KDSI ≥ 10

MM = 2.060 (KDSI)1.047 x (effort Multipliers Fi)
for KDSI < 10.

 Doty model has provided a way to maintain
relationships for different application areas and also a way to
calculate documentation and travel costs. However, Doty
model was practiced only to derive estimates discovered in
SDC database, so the reliability of Doty model on other
environments is questioned [59]. Boehm [72] argues that
Doty exhibits discontinuity at KDSi =10 and has widely
varied estimates via Fi factors and adds effort estimate to 92%
if the answer to factor (first development on the target
computer) is Yes. The factors are given at table III (Appendix
B).

3.4 Power Function Model

 These models usually estimate the effort while using
different cost factors and the length of code. Two mostly used
models in this category are.

3.4.1 Putnam (SLIM) Model

L.H. Putnam has developed Putnam model[8][88]
with the objective to recognize the resource expenditures,
estimate the total software life cycle effort in person months
and the time required for the development of the project. The
Putnam model was developed by using a database of 40 US
army computer systems along with other software data taken
from 400 projects [59].

Putnam during his work observed that for the
understanding of software process it will be helpful if system
attribute like number of files, modules and other are related
with manpower by allocating resources to different
overlapping phases of life cycle, which can be characterized
by Norden Rayleigh form [7]. Putnam has used this concept
and assumed that the personal utilization during the
development of the project is described by a Rayleigh-type
curve [58] [73] [50] [31] [52] [7] and determined that the
curve can be related to the number of lines of code to the time
and effort required by the project. The equation proposed by
Putnam is given as:

S = Ck K 1/3 td 4/3

Where K is the total effort (in PM), S is the product
size, td corresponds to the time required to develop the
software. Ck is the constant value which reflects constraints
on the basis of working environments. The exact value of Ck
for a specific project can be computed from the historical data
of the organization developing it. However, the range for Ck
suggested by authors in [84] [86] [85] is between 2000 and
20,000, 6000 to 150000, and 610 to 57314 respectively.

Dr. Randall Jensen at Hughes Aircraft Co proposed
Jensen model [46] to provide reasonable software
estimates. The Jensen model is very alike to the Putnam
SLIM model [87] discussed in above section. The Jensen

Other
than this simple equation by Putnam, there were several other
equations [59] proposed like cash flow equation, cumulative
cost equation, life cycle cost equation design and coding
equation, difficulty equation, tradeoff law, cost tradeoff
equation and productivity rate equation. The readers
interested in these equations can read [11] [8].

3.4.2 Jensen Model

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

620

proposed following equation, discussed in detail at [47] [48]
[72] [87]:

E = 0.4(S/Cte)2 x 1/T2

Where E is the effort needed to develop the
software in person years, S is effective software size, T is the
development time in years and Cte is Jensen’s technology
Constant that is the slight variation in the Putnam’s Constant
value [87]. Technology constant in Jensen model is a product
of a basic technology constant and several adjustment factors
just like in the case of intermediate CoCoMo-81[87]. This
value for effective technology constant can be computed by
following expression [50]

Cte = Ctbm(X)

Where Ctb is the basic technology constant and m(X)

is the cost driver adjustment multiplier (is explained in
Putnam model). The cost drivers defined in X describe the
attributes related to the product, personnel, and resource areas
that affect effort [50].

Different calibrations have been made in Jensen

model to achieve better performances. Authors in [84] have
introduced Productivity parameter to tune the model to the
capability of the organization and the difficulty of the
application. They also introduced a special skills factor that
varies as a function of size from 0.16 to 0.39 and enhanced
the basic Jensen’s equation as [84]:

Size = (Effort/ßeta)1/3 Schedule 4/3

COCOMO is based on linear-least square regression
with Line of Code (LOC) as unit of measure for size. Boehm

proposed three levels of Cocomo namely Basic, Intermediate
and Detailed [5].
 Basic model is a single value static model used for
computing software effort and cost as a function of program
size. In condition where a rough effort estimate is desired,
basic cocomo is considered effective. The general form of
equation for estimating Effort, Productivity, schedule and
staff for Basic cocomo is given as:

 Effort = a(KLOC)

Process Productivity
Parameter

The model has been continually improved over the
years and has provided a base for the development of
commercial estimating tools like CEI JS1, JS2 and System 3
products, and the GAI SEER for Software product [48].
Jensen model was applied on classical software development
projects though the results were not accurate, however,
researches [45] have found Jensen model a better approach
and credible as compared to Putnam model.

3.4.3 Constructive Cost Model (CoCoMo)

Cocomo by Barry Boehm in 1981 is perhaps the
most complete and thoroughly documented which is practiced
more than any other cost estimation model among all models
for effort estimation. The reasons for the success of CoCoMo
is may be its availability as an open internal public domain
model or the better estimation results.

b
 Productivity = KLOC/Effort
 Schedule (months)= c(Effort)d
 Staffing = Effort/Schedule

The coefficients appeared in these equations
represents the three development modes include Organic
(Project is being developed in similar environment with
respect to some previously developed project), Embedded
(Project has hard and inflexible requirements and constraints),
and Semi-Detached (Project’s type falls some where between
Organic and Embedded mode) [5] [61].

 Intermediate Model computes effort as a function of

program size and a set of Cost drivers. The equation for
estimating software Effort for intermediate model slightly
differs from Basic cocomo as:

 Effort = a(KLOC)b

The cost is usually not calculated through CoCoMo
because different organizations have different productivity

 x m(X)

Where m(X) is effort adjustment factor and it is the
product of 15 Effort Multipliers [5]. a and b are parameters
whose values are derived from three modes as discussed
above.

Detailed model include all characteristics of

intermediate model with the difference that the impact of cost
drivers is assessed for each and every phase of software
engineering process rather for any specific phase activity.
Cocomo was derived from the study of several projects and
model proposed following basic equations [5].

Intermediate model can be used to make accurate

predictions after the product is defined and personnel are
being assigned to product development [50]. The Detail level
model allows a three level hierarchical decomposition of a
Software Product. Three levels are: module, Subsystem, and
system to derive a good estimate.

The effort required to produce a Software Product

can be determined using a simple overall Basic level model, a
more detailed Intermediate level model, or a detailed level
model, However, currently we are interested only in the
equation proposed for Basic cocomo model.

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

621

rates. For example, basic CoCoMo with organic mode values
assuming burdened labor rate of 5000$ and for 36KLOC will
yield 516771$. If average labor rate is10, 000$ then cost will
equal to 1033500$.

Authors in [64] have shown that CoCoMo’s results

are better than Bailey & Basili, Walston & Felix and Doty
model. It is also good to mention that if we use the
same(LOC=36000) data provided by Mohanty [58], then
CoCoMo yields following three results for three modes using
basic cocomo equations.

Basic Cocomo(Organic)
Effort = 103.35 MM
Time = 14.6 months

Semi-detached
Effort = 166MM
Time = 15 months

Embedded
Effort = 265.4MM
Time = 15months

Author in [58] shows that for 36000 LOC, SDC
effort estimate is 288.14 MM, Walston 135.6MM in 13.77
months, Aron 126.62MM, Schneider 211.42MM and doty
163.73 MM. Comparatively, it can be stated that CoCoMo
with organic mode has produced better results as others of its
time. Another reason to support CoCoMo is its growth in
recent years with various enhancements and a number of
models are developed from the basic concept of CoCoMo.
These advancements resulted in the CoCoMo suit that
includes the extensions of CoCoMo and independent models
[65].

3.5. Others

The following algorithmic models are kept in this
category on the basis that most of these were proposed and
utilized by different organizations. We assembled these with
no other specific reason.

3.5.1 SCEP Model [59]

TRW software cost estimating program (SCEP) was
developed in 1978 to estimate person months to complete
different phases (preliminary design, detailed design, coding
and unit test, integration and final test) of one or more user
defined subsystems.. A database of 20 completed projects [9]
was used to produce different equations and determine
different factors that collectively yielded development time
estimates in person months.

This model was a typical work break down structure
approach to assure accurate estimation and enhancing
traceability. However, the limited availability and limited
estimation to only few phases of life cycle has lessened the
utilization of this model.

3.5.2 Kustanowitz model [91]

This model is proposed by Alvin Kustanowitz in
1977 to estimate the man power required for software
implementation and this technique is famously known as
SLICE (Software Lifecycle Estimation). The model proposed
following stepwise approach for estimation [54].

Step 1: from the all possible activities in life cycle of
software (i-e Planning Coding Feasibility Study Compilation,
Conceptual Design, coding, unit test, integration test….), a
list comprising a project profile which is created and modified
according to the environment. According to kustanowitz a
typical project profile involves 6-10 phases or steps
(Functional Requirements Definition, Conceptual Systems
Design, System Design, Program Specification, Coding, Unit
Test, System Test). Step 2: On the available historical data,
the percentages were assigned to the phases of project profile.
STEP 3 & 4 : The determination of the productivity rate in the
form of average number of instructions per day on the
grounds of historical data and the determination that whether
the productivity rate is applicable for any particular phase or
not. This applicability was considered because productivity
rate is determined to be LOC per day and can only be
appropriate for programming activities. Step 5: Estimate the
total number of instructions in the system. Step6: The
estimated LOC were divided by productivity factor to get
required technical man-days. The result of this division was
again divided by results of step 4 to determine total number of
man-days required for the project. Step 7: The determination
of the manpower loading and schedule by finding the square
root of the required man-months.

The productivity factors in Kustanowitz model are

defined on the basis of experience, environment and
programming language [58]. Authors in [92] suggested that
the productivity factor for real time system is 48 to 96
instruction/ man month. [58] Used 100 as productivity factor
for mathematical systems. The gernal form of the expression
to compute Cost and time by Kustanowitz model is given as:

Total Cost = MM (Labor rate per year/12)

Where MM is the effort in man month which is
obtained by dividing the number of instructions by the
appropriate productivity factor. The expected development
time in man months is the square root of Man months.

Expected Development Time = (MM)1/2

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

622

3.5.3 Schneider Model

Schneider model was proposed by Victor Schneider.
This model was the outcome of the deep analysis of 400
projects that were programmed in all the major high-order
languages and assembly languages taken from the open
computer literature and other contractors [53]

Schneider has used Halstead’s software science idea

to estimate effort in man-months (MM) by the help of
following equation [58].

MM = (2.1433 x 10-7 (Nlog2 η)1.5) / (λ 0.5)

In this expression the program length N was ηlog2
(η/2), N’s value for assembly language was given as 2667I
and for FORTRAN language was 1900I. I was the number of
instructions in thousands. The language level λ for assembly
language and FORTRAN language was 0.88 and 1.14
respectively [53][58]. The values of λ and N were obtained
from the statistical study of different data sets which were
approved by different researchers. The following expressions
[53] are used to calculate man –months.

While taking the value of log2η = N.22

 the above
expression was rearranged in the following way.

MM =.

And further to

MM =

The value of N was 2284I (i-e average of 2667I and
1900I) used in the above expression which has yielded the
result as average of the effort involved in coding in HOL and
in assembly language:

MM = 0.3I

The PRICE-S, a propriety cost estimating model was
originally developed at RCA by F. Freiman and Dr. R. Park in
1977 and was used for estimating several US DoD, NASA
and other government software projects [11][52][73][58]. The
model was used to compute the observed factors from the

historical data and then uses these factors to estimate cost,
schedule, size and complexity of proposed projects [58].

Price-s also consists three sub models [73]. The

Acquisition Sub model to specifically estimate the software
costs and schedules. The Sizing Sub model is used for
estimating the size of the software to be developed. Finally,
the Life-cycle Cost Sub model is used for cost estimation of
the maintenance and support phases.

In this section we have tried to provide a descriptive

view of most of the famous algorithmic models. We now
summarize our discussion by comparing the estimates
produced by the general equations of different models for
Cost, Effort and Development Time required. We use some
values that are already computed by Mohanty [58]. The
values which are not computed by Mohanty are computed on
the basis of the assumptions in [58] that the assumed Lines of
Code will be 36,000 and assumed labor rate per year is
50,000$. Table I provides the general expressions for the
Effort, Cost and Development time estimation. The equations
are already discussed in detail in their relevant sections,
however they are provided in table I for reader’s convenience.
The arrangement of the models in table I are random, and the
emphasis is only on the comparison of equations.

On the basis of these equations, we have computed
the values for these models in Table II on the assumptions and
available data, discussed above. Out of three estimated values
of Wolverton model [58], we take the medium value for our
comparison. From Table II we concluded that a lot of
variation exists among the results of the estimation techniques
for same number of LOC and burdened labor rate. These
results fall in the range of 50.126 PM to 518.4 PM effort and
.362 Million to 1.6 Million dollars cost. This variation is
probably because of the environmental and productivity
factors, different policies of the organizations that used and
maintained these models, difference in the data sets selected
by researchers to apply experiments, inappropriate
development process, the varying currency rates, and
certainly the Time itself.

Figure 2 Depicts the effort values computed from the

models and figure III represents the estimated cost in
millions. Figure IV represents the estimated time for
development

1.83

3.5.4 Price- S Model [90]

2.1433 x 10 -7 (NN.22)1.5
 λ 0.5

2.1433 x 10 -7 (N)1.83
 λ 0.5

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

623

Table I: Effort, Software Cost and Development Time Equations

Table II. Effort, Software Cost and Development Time results

Model Effort in Man Months Software Cost(Dollars in Million) Development Time

Farr & Zagorski 86.998 .3625 ----
Bailey & Basili 50.126 ---- ----

Nelson 119.36 ---- ----
Walston & Felix 135.6 0.565 13.77

Doty 163.73 0.682208 ----
GRC ---- 1.2245 ----
SDC 288.14 1.200585 ----
Aron 126.62 0.530576 ----

Wolverton ---- 1.13868(medium) ----
Putnam 43.2 PY or 518.4 PM* ---- ----
Jensen 32.4 PY or 388.8 PM* ----

CoCoMo(basic &
Organic)

103.354 0.43064 14.56

Kustanowitz ---- 1.6 19.6

Schneider 211.42 0.88092 ----

Price S 1.33 18

Model Effort in Man Months Software Cost Development
Time

Farr & Zagorski

MM (Labor rate /12) ----

Bailey & Basili 0.73 * DL 1.16 ---- + 3.5 ----

Nelson
Constant Value+

---- ----

Walston & Felix 5.2 L Effort(Labor rate year/12) 0.91 2.47(Effort)0.35
Doty 5.288 (KDSI) Effort(Labor rate year/12) l 047 ----
GRC ---- 0.232(LOC) ---- 1.43

SDC

MM(Labor rate per year/12) ----

Aron (Deliverable Instructions)/ (Instruction
per Man Month) ---- ----

Wolverton ----

Putnam [S/Ck]3 * Td1/4 ---- in (Person Year) ----

Jensen 0.4(S/Cte)2 x 1/T2
---- in (Person

Year) ----

CoCoMo(basic) a(KLOC) Effort * Average Productivity
b c(Effort)d

Kustanowitz ---- MM (Labor rate per year/12) (MM)1/2

Schneider 0.3I MM(Labor rate year/12) 1.83 ----

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

624

* Technology constant taken for Putnam is 3000 and the time in year is assumed to be 2 years.
* Assumed Technology constant for Jensen model is 2000 and the time in year is assumed to be 2 years.

Figure II. Effort Estimates (Person Months-PM)

103

365

518.4

119.36

211.42

384

135.6

163.73

288.14

126.62

50.126

86.998

0

100

200

300

400

500

Fa
rr

&
Za

go
rs

ki
Ba

ile
y &

 B
as

ili
Ar

on
SD

C
Do

ty
W

als
ton

 &
 F

eil
ix

W
olv

er
ton

Sc
hin

ide
r

ne
lso

n
pu

tna
m

jen
se

n
Co

co
m

o(
or

g)

Figure III. Cost Estimates (in Million)

0.43064

1.33

1.6

0.88092

1.2245
1.13868

0.565

0.682208

1.200585

0.530576

0.3625

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Farr &
 Zagorsk

i
Aron

SDC
Doty

Walsto
n & Felix

Wolve
rto

n(m
edium)

GRC

Schneider

Kusta
nowitz

Price
 S

CoC
oMo(basic

 & Organic)

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

625

Figure VI. Estimated development time in Months

13.77

19.6
18

14.56

0
3
6
9

12
15
18
21
24

W
als

ton
 &

 F
eli

x

Ku
sta

no
wi

tz

Pr
ice

 S

Co
Co

Mo

 From all presented discussion we have seen that a lot
of variation is existed in the results of algorithmic models,
even computed for same LOC and burdened labor rate. At
some places the result is too optimistic (Farr & Zaorski) and
at some places its too pessimistic (Putnam). In such
circumstances its quite hard to decide the most appropriate
model. However, on the basis of discussion we recommend
that the openness of CoCoMo and its continuous
recalibrations makes it somehow better as compared to others
of its age. Jensen model stands close in the race of
enhancements and recalibrations which can be proved to be a
good competitor to CoCoMos in future.

4. NON- ALGORITHMIC

 In recent years the researchers have diverted their
attentions toward the techniques that are more concerned with
judgments and comparisons with previous work rather to use
numerical models for predicting effort. Boehm[5] categorized
estimation techniques into seven divisions’ i-e algorithmic
(above section), Expert judgment, analogy, price to win,
Parkinson, top down and bottom up. In this section we will
elaborate the basics of these techniques from the perspective
of literature proposed on these techniques plus the trend
toward the applicability of new approaches like fuzzy logic
and neural networks in estimation field, however the two
techniques i-e Parkinson(set the scope of the project) and
price-to-win(a pricing tactic) will not be included as they are
not the predicting techniques[67],

4.1 Expert Judgment

 Expert Judgment sometimes known as Delphi
technique is one of the most widely used Method, sometimes
referred as Educated guessing technique based on intuition of
some experts who make decisions during the estimation
process, rather on formal models presented above. Human
experts provide cost and schedule estimates based on their
experience. Usually, they have knowledge of similar
development efforts, and the degree of similarity is relative to
their understanding of the proposed project , the guess is a
sophisticated judgment supported by a variety of tools [43]
The whole process of estimation could be a group discussion
that ends upon a all agreed effort estimate. Boehm [5]
suggests that expert judgment may be the most sensitive tool
for identifying crucial differences between jobs. Prediction
process highly depends upon the availability of accurate
information. Different researches [44][67][42] have shown
that expert judgment is not a weak techniques as compared to
algorithmic models and in many cases Expert Judgment has
out performed the formal techniques.

 Though the Expert judgment has a number of
advantages like quick production, little resources with respect
to time and cost, accuracy over algorithmic techniques does
not make it unbeatable. Just like other models/ techniques it
has some downside like [40]:

 Subjective in nature
 One problem, different estimator will produce

different estimates.

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

626

 Experience level effects estimate.
 Unstructured process
 Hard to convince customer
 Difficulty in validating estimate.

 However, it may be said that Expert estimation
is the method which is probably most frequently used
and it can not be said that the use of formal estimation
methods on average lead to more precise estimates as
compared to expert judgment base method [39].

4.1.1 Top Down/Bottom up strategies for
Expert Estimation

As it is mentioned earlier that expert
estimation is conducted by expert persons and it is
based on non-explicit, non-recoverable reasoning
processes including estimation strategies supported by
historical data, process guidelines and checklists. Two
famous strategies for expert estimation are top-down
approach and bottom-up approach [27].

 Top-down strategy suggests that total effort is
measurable without decomposing or breaking down the
project into fewer activities or parts. The project’s total
effort is measured by keeping the project as a whole
entity. Contrary to top-down strategy, work should be
broken down into the number of activities and the effort
for individual activity and the effort for each activity
are estimated and the project effort becomes the sum of
all individual activity’s effort.

Both of these strategies can be applied while
working expertly and none of both are proved a better
approach when compared with each another. [26] has
shown that the decomposition is a better technique
while estimating effort rather to induct top-down
strategy. On the other hand [25] has shown that the
results obtained from bottom-up strategies are less
accurate then top-down strategy.

4.2 Analogy

 Analogy is a problem solving technique [37]
which is used to estimate effort for a new problem by
analyzing solutions that were used to solve an old
problem. The parameters are searched, modified and
adjusted for a current problem by a deep study and
comparison from the similar cases that were already

solved [30]. The analogy method usually follows the
process in three step fashion [30].

(1) Selection of relevant cost attributes

 The selection of relevant cost attributes may
be determined by looking at the best possible
combination of variables by implementing a
comprehensive search by means of available clustering
algorithms[29] like ANGEL [32], ACE[28] and
ESTOR[33].

(2) Selection of suitable similarity/distance

functions

 The diversity of the projects makes their
comparison difficult. In order to compare the datasets
of different projects the Similarity functions are
defined. Many approaches are used to assess similarity
i-e the dissimilarity coefficient by Kaufman and
Rousseeuw [35], Nearest Neighbor Algorithm [34],
Manually Guided Induction, Template retrieval
Specificity preference, Frequency preference Recency
preference and Fuzzy similarity [17]

(3) Number of analogues to consider for

prediction.

 For prediction, one may use the effort value of
the most similar analogue. When considering more than
one analogue, simply the mean value (mean effort from
retrieved project 1 and 2), or a weighted mean may be
used for prediction.

 Author in [28] suggests that analogy
techniques is useful where the domain is difficult to
model and can be used with partial knowledge of the
target project, potential to mitigate problems with
calibration and outliers and It offers the chance to learn
from past experience. However, some difficulties are
also faced while analogy. For conducting analogy
method, four factors are required for its accuracy [28]

 (i) Availability of appropriate analogue.
 (ii) A sound strategy to select analogue.
 (iii) Accuracy of the data used for both the

analogue and the new project.
 (iv) The manner whereby differences between

the analogue and target are allowed for
when deriving an estimate.

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

627

4.3 Fuzzy Logic and Neural Networking

 The growing research in estimation fields has
compelled researchers to go beyond the formal
regression based models to new approaches for better
estimation. These efforts have evolved the use of fuzzy
approach [56] and neural network to predict effort by
their application on the available formal methods.

In the estimation process it is commonly found

that uncertainty exists at the beginning of projects and
to determine the influence of the system’s characteristic
is hard to measure through metrics based on numeric
values; however the use of cognitive descriptions can
yield better result in an easy way [24]. This idea has
given a new trend to estimation field by combining the
metrics with fuzzy theory. The author in [22] discussed
that the current formal models have certain problems
like formal models need exact values as input, over
commitment and size of data sets. The solutions
suggested [22] to these problems are the set of fuzzy
variables for metrics and models.

The fuzzy approach gives a range of possible

values to the size of project rather to allocate the
numeric values[21]. The mode can also be specified for
development which is named as a fuzzy range which
allows predicting effort for projects that do not fall in
precise mode [16]. This predicted effort is multiplied
with effort adjustment factors to yield Estimated Effort.
Fuzzy logic is evolving comprehensively in the field of
estimation and a number of researchers have used fuzzy
logic technique to apply it on formal models [16]. For
example, Jack Ryder [16] examined fuzzy techniques to
COCOMO and the Function-Points models. Idri and
Abran [14] applied fuzzy logic to the cost drivers of
intermediate COCOMO model. Authors in [12] have
used fuzzy logic to develop a metric named Fuzzy Use
Case Size Point (FUSP) for the effort estimation of
object-oriented software.

 Another approach with close connection to
fuzzy logic is emerging and that is the use of artificial
neural networks to predict effort. Back propagation
algorithm is the most famous technique that is used in
cost estimation by Venkatachalam[93], Wittig and
Finnie [94], Sarinivasan & Fisher [95] and many more.
Through this technique the neurons are arranged in
layers and there are only connections between neurons
in one layer to the following[18]). The network
generates effort while propagating cost drivers and

other attributes as input through subsequent layers to
final output layer [18][38]. Most recent efforts in
software estimation is close collaborations of traditional
estimation techniques and the use of computational
intelligence techniques. Vinay Kumar et. al [96] used
wavelet Nueral network for cost estimation, Pahariya et
al[97] experimented a number of computational
techniques in estimation, Lefley and Shepperd [98]
used genetic programming to improve software
estimation process, Samson[99] used Albus Perceptron
method.

In this section we have assembled few non

algorithmic techniques, introduced briefly some newer
techniques than the ones presented in above sections.
Scope of current study is however the emphasis on
older techniques, therefore we avoided the in-depth
discussion on Fuzzy logic, Neural networks and other
computational intelligence techniques. Although the
meddling of computational intelligence perhaps will
enhance the accuracy of software estimation but as far
as old techniques (Parametric/Non-parametric) are
concerned, still most of the organization follow
expertise based approaches for estimation. Every
technique has its own worth in any particular scenario
and these expertise based approaches cannot be
neglected [44][67][42] or replaced by the
mathematically proven parametric models.

5. FUTURE WORK

 We have tried to cover most of the algorithmic
and non algorithmic models in this paper, however,
there are still few approaches that were discovered
during this research, but not discussed in this paper. In
future research could be conducted about all-inclusive
analysis of some models in back dates like Sech-square
model, Ruby Model, Daly model, Aerospace model,
Kemerer model, Chen model, Goel & Okumoto model,
Navel Air Development Centre model, Peters and
Ramanna Model. Cost estimation process could
become more reliable and sophisticated if Some new
techniques that are partially stated in current study like
fuzzification and Neural Networks and old
algorithmic/non-algorithmic techniques in cost
estimation are merge with some new approaches
proposed in recent years like Genetic Algorithm for
estimation by Huang and Chiu, Mantere and Alander’s
evolutionary methods for estimation, multivariate
interpolation model by Uysal (2006). Further study can
perform to check this assumption.

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

628

6. CONCLUSIONS AND SUGGESTIONS

 Software Cost estimation is an important
process in software development that cannot be
neglected. For the proper management of any project,
proper measurements must be adopted. “If you can’t
measure it, you can’t manage it ~George Odiorne”. In
this paper we have summarized a number of estimation
techniques/models that were proposed between 1960
and 1990, other than few techniques in non algorithmic
section. The paper started with a concise overview of
understanding cost estimation and factors affecting it.
Software metrics were described in section 2.
Algorithmic models were integrated in section 3 which
were distributed into different categories. We have seen
that all contributors have provided some thing new and
valuable to this field of estimation. Although every
approach presented in section 3 was not found perfect
or without any flaw. Nearly every technique was
proposed to solve the problem while working in its own
environmental boundary and apparently the algorithms
developed at one environment were not possibly able to
be utilized at any other environment [3]. However, we

 In section 4 we have discussed some non
algorithmic approaches that are still in use and found to
be more reliable then algorithmic techniques by some
authors[44][67][42]. Some new approaches are
presented in a bird eye view and will be discussed in
details in future. We have mentioned few

Computational intelligence techniques that are being
practiced. However, during the study it is observed that
most of the authors have conducted their experimental
work on cocomo. Perhaps it would be better to enlarge
the sphere of research and put some other parametric
models in this race.

It is recommended that any approach alone,
whether algorithmic, based on rigid mathematical
proven formula or a straightforward technique just
based on experience is not sufficient. Diverse
techniques should be merged to estimate the effort and
other factors. Expertise based techniques can be used to
estimate and can be validated by the exercise of some
parametric model or computational intelligence
technique. Different techniques mutually will give a
better chance to utilize the best attributes of those
techniques.

APPENDIX A

Boeing Environmental Factors, Source [59]

1. Reimplementation of existing software
2. Follow-on contract with current custome
3. Number of programmers
4. High order language and a proven

compiler
5. Macro language including forms for

documentation
6. On-line data entry /coding
7. On-line debugging

have seen from the study that relatively CoCoMo is a
enhanced approach than others [64] and the
advancements in CoCoMo, though not discussed, are
available and continuously evolving.

8. Experience with similar applications-
entry-level, moderate or high

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

629

APPENDIX B

Table III: Environmental Factors of Doty Model, Source [72]

 Table IV: Productivity table used by Aron, Source [54]

Duration(Months) 6 to 12 12 to 24 more than 24

Difficulty(Easy) 20 500 10,000 Very Few
Interactions

Difficulty(medium) 10 250 5,000 Some Interactions
Difficulty(Hard) 5 125 1,500 Many Interactions

Units Instructions
Per Man-Day

Instructions
Per Man-
Month

Instructions Per Man-
Year

Factors Fi Yes No

1. Special displays- use of CRT displays, scopes, graphics f1 1.11 1.00

2. Detailed definition of operational requirements f2 1.00 1.11

3. Changes to operational requirements f3 1.05 1.00
4. Real time operation f4 1.33 1.00

5. CPU memory constraint f5 1.43 1.00

6. CPU time constraint f6 1.33 1.00
7. New CPU- is this the first software developed on the target

computer? f7 1.92 1.00
8. Concurrent development f8 1.82 1.00

9. Time share development environment f9 0.83 1.00

10. Computer location f10 1.43 1.00
11. Development at user site f11 1.39 1.00

12. Development computer- will the development computer be different
han the target computer f12 1.25 1.00

13. Multi site development f13 1.25 1.00
14. Computer access(programmer)

f14
Limited 1.00

 unlimited 0.90

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

630

Table V: Nelson’s Coefficients and Cost Drivers in 1966 SDC study, Source [49][50]

c Value i Cost Driver Value
c -33.63 0 x Y axis intercept 0 1
c 9.15 1 x Lack of Requirements 1 0-2
c 10.73 2 x Stability of Design 2 0-3
c 0.51 3 x Percent Math Instructions 3 Actual percent
c 0.46 4 x Percent I/O Instructions 4 Actual percent
c 0.40 5 x Number of Subprograms 5 Actual number
c 7.28 6 x Programming Language 6 0-1
c -21.45 7 x Business Application 7 0-1
c 13.5 8 x Stand-alone program 8 0-1
c 12.35 9 x First Program on Computer 9 0-1
c 58.82 10 x Concurrent Hardware Development 10 0-1
c 30.61 11 x Random Access Device Used 11 0-1
c 29.55 12 x Different Host, Target Hardware 12 0-1
c 0.54 13 x Number of Personnel Trips 13 Actual number
c -25.20 14 x Developed by Military Organization 14 0-1

Table VI: Coefficients and Cost Drivers in the Farr-Zagorski Study, Source [50]

Value Ci Cost Driver Value
C -188 0 x Y axis intercept of the equation 0 1
C 2.86 1 x Number of instructions 1 Number in thousands
C 2.3 2 x Number of miles traveled 2 Number in thousands
C 33 3 x Number of document types delivered 3 Actual number
C -17 4 x System programmer experience 4 Number in years
C 10 5 x Number of display consoles 5 Actual number
C 1 6 x Percentage of new instructions 6 Decimal equivalent

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

631

7. REFERENCES
[1] Z. Zia, A. Rashid, and K. U. Zaman, “Software

Cost Estimation for component based fourth-
generation-language software applications,” IET
software, vol. 5, pp. 103-110, Feb. 2011.

[2] B. W. Boehm and P. N. Papaccio,

“Understanding and controlling software costs,”
IEEE Transactions on Software Engineering,
vol. 14, no. 10, Oct. 1988.

[3] J. J. Bailey and V. R. Basili, "A meta-model for

software development resource expenditures," in
Proc. 5th Int. Conf. Software Eng.,
IEEE/ACM/NBS, 1981, pp. 107-116.

[4] L. Farr and J. H. Zagorski, “Quantitative

Analysis of Programming Cost Factors: A
Progress Report,” in Economics of Automatic
Data Processing, ICC Symposium Proceedings,
A.B. Frielink, (ed.), North-Holland, 1965.

[5] B. W. Boehm, Software Engineering Economics,

Englewood Cliffs, NJ: Prentice-Hall, 1981.

[6] K. Lum, M. Bramble, J. Hihn, J. Hackney, M.

Khorrani, and E. Monson, Handbook for
Software cost Estimation, Jet Propulsion
Laboratory, Pasadena, California, 2003.

[7] P. V. Norden, “On the Anatomy of Development

Projects,” IRE Transactions on Engineering
Management, vol. EM-7, no. 1, pp. 34-42,
March 1960.

[8] L. H. Putnam, “A General Empirical Solution to

the Macro Software Sizing and Estimating
Problem,” IEEE Transaction on Software
Engineering, vol. SE-4, no. 4, pp. 345-361, July
1978.

[9] B. W. Boehm, Early experiences in software

economics, Springer-Verlag New York, Inc.

New York, 2002.

[10] Y. Zheng, B. Wang, Y. Zheng, and L. Shi,
“

function point

Estimation of software projects effort based on

,” in Computer Science &
Education, 2009. ICCSE '09. 4th International
Conference, 2009, p. 941-943.

[11] B. Londeix, Cost estimation for software

development, Addison-Wesley, 1987.

[12] M. R. Braz and S. R. Vergilio, “Using Fuzzy

Theory for Effort Estimation of Object-Oriented
Software,” Proc. of the 16th IEEE International
Conference on Tools with Artificial Intelligence
(ICTAI), 2004, p. 196-201.

[13] Attarzadeh, “A Novel Soft Computing Model to

Increase the Accuracy of Software Development
Cost Estimation,”

The 2nd International
Conference on Computer and
Automation Engineering ICCAE, 2010, p.
603-607.

[14] A. Idri and A. Abran, “COCOMO Cost Model

Using Fuzzy Logic,” 7th International
Conference on Fuzzy Theory and Technology,
Atlantic City, New Jersey, March 2000, p. 1-4.

[15] G. B. Ibarra, “Software Estimation Based Om

use Case Size,” Software Engineering
SBES Brazilian Symposium on (1979

[18] A. Idri, T. M. Khoshgoftaar, and A. Abran, “Can
neural networks be easily interpreted in software
cost estimation,” in proc. of Fuzzy Systems,
2002. FUZZ-IEEE'02 the

),
2010, p. 178-187.

[16] J. Ryder, “Fuzzy Modeling of Software Effort

Prediction,” in proc. of IEEE Information
Technology Conference, Syracuse, NY, 1998, p.
53-56.

[17] M. Shepperd and C. Schofiled, “Estimating

Software Project Effort Using Analogies,” IEEE
Transactions on Software Engineering, vol. 23,
no.11, pp.736-743, Nov. 1997.

 IEEE International
Conference, 2002, p. 1162-1167.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yinhuan%20Zheng.QT.&newsearch=partialPref�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Beizhan%20Wang.QT.&newsearch=partialPref�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yilong%20Zheng.QT.&newsearch=partialPref�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Liang%20Shi.QT.&newsearch=partialPref�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5209213�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5209213�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5209213�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7876�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7876�

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

632

[19] D. St-Pierre, M. Maya, A. Abran, J. Desharnais,
and P. Bourque. Full Function Points: Counting
Practice Mannaul, Technical Report 1997-04,
Montreal, 1997.

[20] R. W. Wolverton, "The cost of developing large-

scale software," IEEE Trans. Comput., pp. 615-
636, June 1974.

[21] P. P. Reddy, K. R. Sudha, and P. R. Sree,

“Application of Fuzzy Logic Approach to
Software Effort Estimation,” International
Journal of Advanced Computer Sciences and
Applications, vol. 2, no. 5, 2011.

[22] R. A. Gray and G. S. MacDonell, “Applications

of Fuzzy Logic to Software Metric Models for
Development Effort Estimation,” in Proc .of
Fuzzy Information Processing Society, 1997.
NAFIPS '97., Annual Meeting of the North
American, 1997, p. 394-399.

[23] C..Jones, Applied Software Measurement,

Assuring Productivity and Quality, McGraw-
Hill, 1997.

[24] C. Yau and R. H. L. Tsoi, “Assessing the

fuzziness of general system characteristics in
estimating software size,” in Proc. of the 1994
Second Australian and New Zealand Conference
on Intelligent Information Systems, 1994, p.
189-193.

[25] K. Moløkken, Expert estimation of Web-

development effort: Individual biases and group
processes (Master Thesis), in Department of
Informatics. 2002, University of Oslo.

[26] T. Connolly and D. Dean, “Decomposed versus

holistic estimates of effort required for software
writing tasks,” Management Science, vol. 43, no.
7, pp. 1029-1045, July 1997.

[27] M. Jorgensen, “Top-Down and Bottom-Up

Expert Estimation of Software Development
Effort,” Information and Software Technology,
vol. 46, no. 1, pp. 3-16, Jan. 2004.

[28] F. Walkerden and R. Jeffery, “An Empirical
Study of Analogy-based Software Effort
Estimation,” Empirical Software Engineering,
vol. 4, no. 2, pp. 135-158.

[29] M. Jørgensen, U. Indahl , and D. Sjøberg,

“Software effort estimation by analogy and
regression toward the mean,” Journal of Systems
and Software, vol. 68, no. 3, pp. 253-262, Dec.
2003.

[30] L. C. Briand and I. Wieczorek, Resource

Estimation in Software Engineering in
Encyclopedia of Software Engineering, Wiley
Online Library, 2002.

[31] E. E. Mills, “Software Metrics,” SEI Curriculum

Module SEI-CM- 12-1.1, Carnegie Mellon
University, Pittsburgh, 1988.

[32] M. Shepperd, C. Schofield, and B. Kitchenham,

“Effort estimation using analogy,” in Proc. of the
18th International Conference on Software
Engineering, Berlin, Germany. 1996.

[33] T. Mukhopadhyay, S. Vicinanza, and M. J.

Pietula, “Estimating the feasibility of a case-
based reasoning model for software effort
estimation,” MIS Quarterly, vol. 16, no. 2, pp.
155–171, 1992.

[34] D.W. Aha, “Case-Based Learning Algorithms,”

in Proc. 1991 DARPA Case-Based Reasoning
Workshop. Morgan Kaufmann, 1991.

[35] L. Kaufman and P. J. Rousseeuw, Finding

Groups in Data. An Introduction to Cluster
Analysis, John Wiley & Sons, Wiley Series in
Probability and Mathematical Statistics, 1990.

[36] B. Kitchenham, Making Process Predictios. In

Fenton, N. E Software metrics, A Rigorous
Approach, Chapman and Hall 1991.

[37] S. J. Delany, P. Cunningham, and W. Wilke,

“The Limits of CBR in Software Project
Estimation,” in Proc. the 6th German Workshop
on Case-Based-Reasoning. L. Gierl, M. Lenz
(eds.), Berlin, 1998.

http://www.doaj.org/doaj?func=openurl&issn=21565570&genre=journal&uiLanguage=en�
http://www.doaj.org/doaj?func=openurl&issn=21565570&genre=journal&uiLanguage=en�
http://www.doaj.org/doaj?func=openurl&issn=21565570&genre=journal&uiLanguage=en�
http://www.doaj.org/doaj?func=openurl&issn=21565570&genre=journal&uiLanguage=en�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4920�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4920�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4920�
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Tsoi,%20R.H.L..QT.&newsearch=partialPref�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=396923�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=396923�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=396923�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3167�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3167�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3167�
http://www.sciencedirect.com/science/journal/09505849�
http://www.springerlink.com/content/1382-3256/�
http://www.sciencedirect.com/science/journal/01641212�
http://www.sciencedirect.com/science/journal/01641212�
http://www.sciencedirect.com/science/journal/01641212�

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

633

[38] A. R. Venkatachalam, “Software Cost
Estimation Using Artificial Neural Nletworks,”
on Neural Networks, 1993. IJCNN '93-Nagoya.
In Proc. of 1993 International Joint Conference,
1993, vol. 1, p. 987-990.

[39] K. Molokken and M. Jorgensen, “A Review of

Surveys on Software Effort Estimation,” in proc.
of Empirical Software Engineering, International
Symposium, 2003, p.223-230.

[40] C. Rush and R. Roy, “expert judgment in cost

estimating:modeling the reasoning process,”
Concurrent Engineering: Research and
Application (CERA), vol. 9, no. 4, pp. 271-284,
2001.

[41] V. Basili, “Models and Metrics for Software

Manaement and Engineering,” IEEE. Computer
Soc. Press, pp. 4-9,1980.

[42] S. Vicinanza, T. Mukhopadhyay, and M. J.

Prietula, “Software effort estimation: an
exploratory study of expert performance,”
Information Systems Research, vol. 2 no. 4, pp.
243–262, 1991.

[43] S. L. Pfleeger, F. Wu and R. Lewis, software

cost estimation and sizing methods, issues and
guidelines, Rand Corporation, 2005.

[44] A.L. Lederer and J. Prasad, “A causal model for

software cost estimating error,” IEEE
Transactions on Software Engineering, vol. 24,
no. 2, pp. 137–148, 1998.

[45] S. Conte, H. Dunsmore, and V.Y. Shen,

Software Engineering Metrics and Models.
Menlo Park, Calif.: Benjamin Cummings, 1986.

[46] R. W. Jensen, “A comparison of the Jensen and

COCOMO schedule and cost estimation
models,” in Proc. of International Society of
Parametric Analysis, 1984, p. 96-106.

[50] R. B. Gradey. (1998) CS course webpages.
 [Online]. Available:

[47] R. Mall, Fundamentals of Software Engineering,
Prentice Hall, India, 1999.

[48] SEI homepage on Jensen Model

[Online].Available:
http://www.seisage.net/jensen_model.htm

[49] E. A. Nelson, Management handbook for the
estimation of computer programming costs,
Systems Development Corporation, AD-
A648750 , Oct. 1966.

http://courses.cs.tamu.edu/lively/606_Simmons/
Textbook/CH07_6.doc

[51] M. Iqbal and M. Rizwan, “Application of 80/20

rule in software engineering Waterfall
Model,” Information and Communication
Technologies, 2009, p. 223-228.

[52] Joint Government/Industry Initiative. (1995)

National Aeronautics and Space administration
home page on Parametric Cost Estimating
handbook. [Online]. Available:
http://cost.jsc.nasa.gov/pcehg.html

[53] V. Schneider, “Prediction of Software Effort and

Project Duration- Four New Formulas,” ACM
Sigplan, vol.13, no.6, 1978.

 [54] N. B. Armstrong, “Software Estimating: A

Description and Analysis of Current
Methodologies with Recommendation on
Appropriate Techniques For Estimating RIT
Research Corporation Software Projects,” M.
Eng. Thesis, Wallace Memorial Library, RIT,
Dec. 1987.

[55] H. Leung and Z. Fan, Software Cost Estimation

Handbook of Software Engineering, Hong Kong
Polytechnic University, 2002.

[56] L. A. Zadeh, “Fuzzy Set,” Information &

Control, Vol. 8, pp. 338-353, 1965.

[57] G.C.Low AND D.R. Jeffery, “Function Points in

Estimation and Evaluation of the Software
Process,” IEEE TRANS. SOFTWARE ENG.,
vol. 16, pp. 64-71, 1990.

[58] S. N. Mohanty, “Software cost estimation:

Present and future,” Software––Practice and
Experience Vol.11, no.2, pp.103–121, 1981.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5797�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5797�
http://courses.cs.tamu.edu/lively/606_Simmons/Textbook/CH07_6.doc�
http://courses.cs.tamu.edu/lively/606_Simmons/Textbook/CH07_6.doc�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5235874�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5235874�
http://cost.jsc.nasa.gov/pcehg.html�

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

634

[59] D. D. Galorath and D. J. Reifer, “Final Report:
Analysis of the state of the Art of Parametric
Software Cost Modeling,” software management
consultants, California, Tech. Rep. Aug. 1980.

[60] J. N. M. Peeples. (2003) Miami University

homepage on Farmer School of Business.
[Online]. Available:
http://www.sba.muohio.edu/abas/2003/vancouve
r/peeples_cosmo4gl%20abas03.pdf

[61] A. Caine and B. Pidduck, “f2 COCOMO:

Estimating Software Project Effort and Cost, ” in
Proc. of the 6th

[64] K. Branley. (2004) cost estimation. [Online].
Available:

 International Workshop on
Economics-Driven Software Engineering
Research, Scotland, May 2004.

[62] N. E. Fenton and S. L. Pfleeger, Software

Metrics: A Rigorous and Practical Approach,
Second Edition, International Thomson
Computer Press, Boston, (1996).

[63] J. N. Buxton and B. Randell, “Software

Engineering Techniques: Report on a
Conference Sponsored by the NATO Science
Committee,” Scientific Affairs Division, NATO,
tech. rep. 27-31 Oct. 1969.

http://www.branley.id.au/papers/Cost_Estimatio
n.pdf

[65] B.W. Boehm, R. Valerdi, J. Lane, and A.W.

Brown, “COCOMO Suite Methodology and
Evolution,” The Journal of Defense Software
Engineering, pp. 20-25, Apr. 2005.

[66] From Wikipedia, the free encyclopedia on

Weighted Micro Function Points (WMFP).
[Online]. Available:

[68]

en.wikipedia.org/wiki/Weighted_Micro_Functio
n_Points

[67] R. T. Hughes, “Expert Judgment as an

estimating method,” information and Software
Technology, vol. 38, pp. 67-75, 1996.

I. Attarzadeh and O. S. Hock, “A Novel Soft
Computing Model to Increase the Accuracy of
Software Development Cost Estimation”. in

Proc. of the 2nd International Conference on
Computer and Automation Engineering (ICCAE
2010), pp. 603-607, Feb. 2010.

[69] C. Jones, Estimating Software Costs, 2nd ed.,

McGraw Hill, 1998.

[70] I. Attarzadeh and O. S. Hock, “A Novel

Algorithmic Cost Estimation Model Based on
Soft Computing Technique,” International
Journal of Computer Science (IJCS), vol. 6. no.
2, pp. 117-125, Jan. 2010.

[71] A.C Hodgkinson and P.W. Garratt,” A

neurofuzzy cost estimator,” in Proc. of the 3rd

[78] P. G. Hamer and G. D. Frewin, “M.H.
Halstead’s Software Science – a critical
examination,” in Proc. of the 6th International

International Conference on Software
Engineering and Applications, 1999, p. 401-406.

[72] B. W. Boehm, “Software Engineering

Economics,”,IEEE trans. On soft. Eng. Vol.10,
no.1, pp 7-19, 1984.

[73] B. W. Boehm, C. Abts, and S. Chulani, “

Software development cost estimation
approaches-A survey,” Ann. Software Eng., vol.
10, pp. 177-205, 2000.

[74] I. Myrtveit, E. Stensrud, and M. Shepperd,

“Reliability and validity in comparative studies
of software prediction models,” IEEE
Transactions on Software Engineering, vol. 31,
no. 5, pp. 380–391, 2005.

[75] R. G. Canning, “A programmer productivity

controversy,” EDP analyzer, vol. 24, no. 1, pp.
1-11. 1986.

[76] A. J. Albrecht, "Measuring application

development productivity," in Share-Guide,
1979, p. 83-92.

[77] A. J. Albrecht, and J. E. Gaffney, "Software

function, source lines of codes, and development
effort prediction: a software science validation",
IEEE Trans. software Eng., vol. se-9, pp. 639-
648, 1983.

http://www.sba.muohio.edu/abas/2003/vancouver/peeples_cosmo4gl%20abas03.pdf�
http://www.sba.muohio.edu/abas/2003/vancouver/peeples_cosmo4gl%20abas03.pdf�
http://www.branley.id.au/papers/Cost_Estimation.pdf�
http://www.branley.id.au/papers/Cost_Estimation.pdf�

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

635

Conference on Software Engineering, Sept 1982,
p. 197-206.

[79] R. S. Pressman, Software Engineering a

practitioner’s Approach, McGraw Hill, 2001.

[80] W. E. Blazer, “Design and Implementation of an

Intelligent Cost Estimation Model for Decision
Support System Software,” M. Eng, thesis,
Naval Postgraduate School, California, 1991.

[81] C. E. Walston and C. P. Felix, "A Method of

Programming measurement and Estimation,"
IBM Systems Journal, Vol. 16, no. 1, pp. 54-73,
1977.

[82] M. H. Halstead, Elements of software science,

Elsevier, New York, 1977.

[83] J. E. Matson, B. E. Barrett, and J. M.

Mellichamp, “Software Development Cost
Estimation Using Function Points,” IEEE
Trans.Software Eng., vol. 20, no. 4, pp. 275-287,
1994.

[84] R. W. Jensen, L. H. Putnam, and W. Roetzheim,

“Software Estimating Models: Three
Viewpoints,” CrossTalk: The Journal of Defense
Software Engineering, USA., Software
Technology Support Center, Vol. 19, no. 2,
February 2006.

[85] R. W. Selby, Software engineering: Barry W.

Boehm's lifetime contributions to software
Engineering, John Wiley & Sons, Inc., New
Jersey, June 2007.

VOL. 3, NO. 4, April 2012 ISSN 2079-8407
Journal of Emerging Trends in Computing and Information Sciences

©2009-2012 CIS Journal. All rights reserved.

http://www.cisjournal.org

636

[86] C. Comstock, Z. Jiang, and J, Davies, “Economies
and diseconomies of scale in software development,” Journal
of Software Maintenance and Evolution: Research and
Practice, Published in Wiley Online Library, Jan. 2011.

[87] S. D. Chulani, Bayesian Analysis of the Software
Cost and Quality Models. PhD thesis, faculty of the Graduate
School University of Southern California, 1999

[88] L. H. Putnam and A. Fitzsimmons, "Estimating
software costs," Datamation, pp. 189-198, Sept. 1979;
continued in Datamation, pp. 171-178, Oct. 1979 and pp. 137-
140, Nov. 1979.

[89] J. R. Herd, J. N. Postak, W. E. Russell, and K. R.
Stewart, "Software cost estimation study-Study results," Doty
Associates, Inc., Rockville, MD, Final Tech. Rep. RADC-TR-
77-220, vol. I, June 1977.

[90] F. R. Freiman and R. D. Park, "PRICE software
model-Version 3, An overview," in Proc. IEEE-PINY
Workshop on quantitative Software Models, IEEE Cat.
TH0067-9, Oct. 1979, pp. 32-41.

[91] A. L. Kustanowitz, “System Life Cycle Estimation
(SLICE): a new approach to estimating resources for
application program development,” in Proc. IEEE COMPSAC,
1977.

[92] E. B. Daly, “Management of software
development,” in Proc. IEEE Transactions on Software
Engineering, SE-3, no. 3, 1977..

[93] A. R. Verkatachalam, ‘Software Cost Estimation
using Artificial Neural Networks, Intemational Joint
Conference on Neural Networks, Neural Networks, Nogoya,
IEEE, 1993

[94] G. Wittig, G. Finnie, ‘Estimating Software
Development Effort with connectionist Models’, Information
and Software Technology, vol. 39, 1997.

[95] K. Srinivasan, Fisher D, “Machine Leaming
Approaches to Estimating Software Development Effort”,
IEEE Transaction on Software Engineering, Vol. 21, No. 2,
February, 1995, pp. 126-136.

[96] K. V. Kumar, V. Ravi, M. Carr, and N. R. Kiran,
“Software development cost estimation using wavelet neural

Networks”, JSS., 2008, pp 1853-1867.
[97] J.S.Pahariya, V. Ravi, and M. Carr, “Software Cost

Estimation using Computational Intelligence Techniques”,
IEEE Transaction, 2009, PP.: 849-854

[98] M. Lefley, and M. J. Shepperd,”Using Genetic
Programming to Improve Software Effort Estimation Based on
General Data Sets”. Proceedings of GECCO, 2003.

[99] B. Samson, D. Ellison, and P. Dugard, “Software
Cost Estimation Using Albus Perceptron (CMAC),”
Information and Software Technology, 1997, vol.39, pp. 55-60.

	9TCost Estimation: A Survey of Well-known Historic Cost Estimation Techniques
	The fuzzy approach gives a range of possible values to the size of project rather to allocate the numeric values[21]. The mode can also be specified for development which is named as a fuzzy range which allows predicting effort for projects that do no...
	Another approach with close connection to fuzzy logic is emerging and that is the use of artificial neural networks to predict effort. Back propagation algorithm is the most famous technique that is used in cost estimation by Venkatachalam[93], Witti...

	[10] 7TY. Zheng7T1T, 0T1T 0T7TB. Wang7T1T, 0T1T 0T7TY. Zheng7T1T, and 0T1T 0T7TL. Shi7T1T, “1TEstimation of software projects effort based on function point1T,” in 1T7TComputer Science & Education, 2009. ICCSE '09. 4th International Conference, 2009, ...
	[18] A. Idri, T. M. Khoshgoftaar, and A. Abran, “Can neural networks be easily interpreted in software cost estimation,” in proc. of Fuzzy Systems, 2002. FUZZ-IEEE'02 the7T IEEE International Conference, 2002, p. 1162-1167. 7T
	[19] D. St-Pierre, M. Maya, A. Abran, J. Desharnais, and P. Bourque. Full Function Points: Counting Practice Mannaul, Technical Report 1997-04, Montreal, 1997.
	[24] C. Yau and R. H. L. 7TTsoi,7T “7TAssessing the fuzziness of general system characteristics in estimating software size7T,” 4Tin 4T7TProc. of the 1994 Second Australian and New Zealand Conference7T on 7TIntelligent Information Systems, 19947T, p...

